Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):793–798. doi: 10.1093/genetics/160.2.793

Comparative analysis of the human dystrophin and utrophin gene structures.

Uberto Pozzoli 1, Manuela Sironi 1, Rachele Cagliani 1, Giacomo P Comi 1, Alessandra Bardoni 1, Nereo Bresolin 1
PMCID: PMC1461978  PMID: 11861579

Abstract

We present analysis of intronic sequences in the human DMD and UTRN genes. In both genes accumulation of repeated elements could account for intron expansion. Out-of-frame rod-domain exons have stronger splice sites and are separated by significantly longer introns as compared to in-frame exons. These features are unique for the two homologs and not shared by other spectrin superfamily genes.

Full Text

The Full Text of this article is available as a PDF (74.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn A. H., Kunkel L. M. The structural and functional diversity of dystrophin. Nat Genet. 1993 Apr;3(4):283–291. doi: 10.1038/ng0493-283. [DOI] [PubMed] [Google Scholar]
  2. Baumbach L. L., Chamberlain J. S., Ward P. A., Farwell N. J., Caskey C. T. Molecular and clinical correlations of deletions leading to Duchenne and Becker muscular dystrophies. Neurology. 1989 Apr;39(4):465–474. doi: 10.1212/wnl.39.4.465. [DOI] [PubMed] [Google Scholar]
  3. Brinster R. L., Allen J. M., Behringer R. R., Gelinas R. E., Palmiter R. D. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A. 1988 Feb;85(3):836–840. doi: 10.1073/pnas.85.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dominguez-Steglich M., Meng G., Bettecken T., Müller C. R., Schmid M. The dystrophin gene is autosomally located on a microchromosome in chicken. Genomics. 1990 Nov;8(3):536–540. doi: 10.1016/0888-7543(90)90041-r. [DOI] [PubMed] [Google Scholar]
  5. Huang S., Spector D. L. Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription. J Cell Biol. 1996 May;133(4):719–732. doi: 10.1083/jcb.133.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jurka J., Zietkiewicz E., Labuda D. Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the mesozoic era. Nucleic Acids Res. 1995 Jan 11;23(1):170–175. doi: 10.1093/nar/23.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Koenig M., Beggs A. H., Moyer M., Scherpf S., Heindrich K., Bettecken T., Meng G., Müller C. R., Lindlöf M., Kaariainen H. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet. 1989 Oct;45(4):498–506. [PMC free article] [PubMed] [Google Scholar]
  8. Koenig M., Monaco A. P., Kunkel L. M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell. 1988 Apr 22;53(2):219–228. doi: 10.1016/0092-8674(88)90383-2. [DOI] [PubMed] [Google Scholar]
  9. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  10. Love D. R., Hill D. F., Dickson G., Spurr N. K., Byth B. C., Marsden R. F., Walsh F. S., Edwards Y. H., Davies K. E. An autosomal transcript in skeletal muscle with homology to dystrophin. Nature. 1989 May 4;339(6219):55–58. doi: 10.1038/339055a0. [DOI] [PubMed] [Google Scholar]
  11. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  12. McNaughton J. C., Cockburn D. J., Hughes G., Jones W. A., Laing N. G., Ray P. N., Stockwell P. A., Petersen G. B. Is gene deletion in eukaryotes sequence-dependent? A study of nine deletion junctions and nineteen other deletion breakpoints in intron 7 of the human dystrophin gene. Gene. 1998 Nov 5;222(1):41–51. doi: 10.1016/s0378-1119(98)00466-1. [DOI] [PubMed] [Google Scholar]
  13. McNaughton J. C., Cockburn D. J., Hughes G., Jones W. A., Laing N. G., Ray P. N., Stockwell P. A., Petersen G. B. Is gene deletion in eukaryotes sequence-dependent? A study of nine deletion junctions and nineteen other deletion breakpoints in intron 7 of the human dystrophin gene. Gene. 1998 Nov 5;222(1):41–51. doi: 10.1016/s0378-1119(98)00466-1. [DOI] [PubMed] [Google Scholar]
  14. Neel H., Weil D., Giansante C., Dautry F. In vivo cooperation between introns during pre-mRNA processing. Genes Dev. 1993 Nov;7(11):2194–2205. doi: 10.1101/gad.7.11.2194. [DOI] [PubMed] [Google Scholar]
  15. Neuman S., Kaban A., Volk T., Yaffe D., Nudel U. The dystrophin / utrophin homologues in Drosophila and in sea urchin. Gene. 2001 Jan 24;263(1-2):17–29. doi: 10.1016/s0378-1119(00)00584-9. [DOI] [PubMed] [Google Scholar]
  16. Okkema P. G., Harrison S. W., Plunger V., Aryana A., Fire A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics. 1993 Oct;135(2):385–404. doi: 10.1093/genetics/135.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pearce M., Blake D. J., Tinsley J. M., Byth B. C., Campbell L., Monaco A. P., Davies K. E. The utrophin and dystrophin genes share similarities in genomic structure. Hum Mol Genet. 1993 Nov;2(11):1765–1772. doi: 10.1093/hmg/2.11.1765. [DOI] [PubMed] [Google Scholar]
  18. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sironi M., Pozzoli U., Cagliani R., Comi G. P., Bardoni A., Bresolin N. Analysis of splicing parameters in the dystrophin gene: relevance for physiological and pathogenetic splicing mechanisms. Hum Genet. 2001 Jul;109(1):73–84. doi: 10.1007/s004390100547. [DOI] [PubMed] [Google Scholar]
  20. Smit A. F. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res. 1993 Apr 25;21(8):1863–1872. doi: 10.1093/nar/21.8.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smit A. F., Riggs A. D. Tiggers and DNA transposon fossils in the human genome. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1443–1448. doi: 10.1073/pnas.93.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smit A. F., Tóth G., Riggs A. D., Jurka J. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol. 1995 Feb 24;246(3):401–417. doi: 10.1006/jmbi.1994.0095. [DOI] [PubMed] [Google Scholar]
  23. Suminaga R., Takeshima Y., Yasuda K., Shiga N., Nakamura H., Matsuo M. Non-homologous recombination between Alu and LINE-1 repeats caused a 430-kb deletion in the dystrophin gene: a novel source of genomic instability. J Hum Genet. 2000;45(6):331–336. doi: 10.1007/s100380070003. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES