Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):595–608. doi: 10.1093/genetics/160.2.595

Interactions between natural selection, recombination and gene density in the genes of Drosophila.

Jody Hey 1, Richard M Kliman 1
PMCID: PMC1461979  PMID: 11861564

Abstract

In Drosophila, as in many organisms, natural selection leads to high levels of codon bias in genes that are highly expressed. Thus codon bias is an indicator of the intensity of one kind of selection that is experienced by genes and can be used to assess the impact of other genomic factors on natural selection. Among 13,000 genes in the Drosophila genome, codon bias has a slight positive, and strongly significant, association with recombination--as expected if recombination allows natural selection to act more efficiently when multiple linked sites segregate functional variation. The same reasoning leads to the expectation that the efficiency of selection, and thus average codon bias, should decline with gene density. However, this prediction is not confirmed. Levels of codon bias and gene expression are highest for those genes in an intermediate range of gene density, a pattern that may be the result of a tradeoff between the advantages for gene expression of close gene spacing and disadvantages arising from regulatory conflicts among tightly packed genes. These factors appear to overlay the more subtle effect of linkage among selected sites that gives rise to the association between recombination rate and codon bias.

Full Text

The Full Text of this article is available as a PDF (215.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Akashi H. Codon bias evolution in Drosophila. Population genetics of mutation-selection drift. Gene. 1997 Dec 31;205(1-2):269–278. doi: 10.1016/s0378-1119(97)00400-9. [DOI] [PubMed] [Google Scholar]
  3. Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. doi: 10.1093/genetics/139.2.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akashi H. Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics. 1996 Nov;144(3):1297–1307. doi: 10.1093/genetics/144.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics. 1994 Mar;136(3):927–935. doi: 10.1093/genetics/136.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  7. Begun D. J. The frequency distribution of nucleotide variation in Drosophila simulans. Mol Biol Evol. 2001 Jul;18(7):1343–1352. doi: 10.1093/oxfordjournals.molbev.a003918. [DOI] [PubMed] [Google Scholar]
  8. Bell A. C., West A. G., Felsenfeld G. Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science. 2001 Jan 19;291(5503):447–450. doi: 10.1126/science.291.5503.447. [DOI] [PubMed] [Google Scholar]
  9. Bennetzen J. L., Hall B. D. Codon selection in yeast. J Biol Chem. 1982 Mar 25;257(6):3026–3031. [PubMed] [Google Scholar]
  10. Carvalho A. B., Clark A. G. Intron size and natural selection. Nature. 1999 Sep 23;401(6751):344–344. doi: 10.1038/43827. [DOI] [PubMed] [Google Scholar]
  11. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chavancy G., Chevallier A., Fournier A., Garel J. P. Adaptation of iso-tRNA concentration to mRNA codon frequency in the eukaryote cell. Biochimie. 1979;61(1):71–78. doi: 10.1016/s0300-9084(79)80314-4. [DOI] [PubMed] [Google Scholar]
  13. Cohen B. A., Mitra R. D., Hughes J. D., Church G. M. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat Genet. 2000 Oct;26(2):183–186. doi: 10.1038/79896. [DOI] [PubMed] [Google Scholar]
  14. Comeron J. M., Kreitman M., Aguadé M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics. 1999 Jan;151(1):239–249. doi: 10.1093/genetics/151.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Duret L., Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4482–4487. doi: 10.1073/pnas.96.8.4482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Farkas G., Leibovitch B. A., Elgin S. C. Chromatin organization and transcriptional control of gene expression in Drosophila. Gene. 2000 Aug 8;253(2):117–136. doi: 10.1016/s0378-1119(00)00240-7. [DOI] [PubMed] [Google Scholar]
  17. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. doi: 10.1093/nar/10.22.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hey J. Selfish genes, pleiotropy and the origin of recombination. Genetics. 1998 Aug;149(4):2089–2097. doi: 10.1093/genetics/149.4.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  20. Ising G., Block K. A transposon as a cytogenetic marker in Drosophila melanogaster. Mol Gen Genet. 1984;196(1):6–16. doi: 10.1007/BF00334085. [DOI] [PubMed] [Google Scholar]
  21. Kimura M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature. 1977 May 19;267(5608):275–276. doi: 10.1038/267275a0. [DOI] [PubMed] [Google Scholar]
  22. Kliman R. M., Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993 Nov;10(6):1239–1258. doi: 10.1093/oxfordjournals.molbev.a040074. [DOI] [PubMed] [Google Scholar]
  23. Kliman R. M. Recent selection on synonymous codon usage in Drosophila. J Mol Evol. 1999 Sep;49(3):343–351. doi: 10.1007/pl00006557. [DOI] [PubMed] [Google Scholar]
  24. Marais G., Mouchiroud D., Duret L. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci U S A. 2001 Apr 24;98(10):5688–5692. doi: 10.1073/pnas.091427698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  26. McVean G. A., Charlesworth B. The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics. 2000 Jun;155(2):929–944. doi: 10.1093/genetics/155.2.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Munte A., Aguade M., Segarra C. Changes in the recombinational environment affect divergence in the yellow gene of Drosophila. Mol Biol Evol. 2001 Jun;18(6):1045–1056. doi: 10.1093/oxfordjournals.molbev.a003876. [DOI] [PubMed] [Google Scholar]
  28. Powell J. R., Moriyama E. N. Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7784–7790. doi: 10.1073/pnas.94.15.7784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rice W. R., Chippindale A. K. Sexual recombination and the power of natural selection. Science. 2001 Oct 19;294(5542):555–559. doi: 10.1126/science.1061380. [DOI] [PubMed] [Google Scholar]
  30. Sharp P. M., Averof M., Lloyd A. T., Matassi G., Peden J. F. DNA sequence evolution: the sounds of silence. Philos Trans R Soc Lond B Biol Sci. 1995 Sep 29;349(1329):241–247. doi: 10.1098/rstb.1995.0108. [DOI] [PubMed] [Google Scholar]
  31. Sharp P. M., Devine K. M. Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do 'prefer' optimal codons. Nucleic Acids Res. 1989 Jul 11;17(13):5029–5039. doi: 10.1093/nar/17.13.5029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sharp P. M., Li W. H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986;24(1-2):28–38. doi: 10.1007/BF02099948. [DOI] [PubMed] [Google Scholar]
  33. Sharp P. M., Li W. H. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987 Feb 11;15(3):1281–1295. doi: 10.1093/nar/15.3.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sharp P. M., Li W. H. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol. 1987 May;4(3):222–230. doi: 10.1093/oxfordjournals.molbev.a040443. [DOI] [PubMed] [Google Scholar]
  35. Shields D. C., Sharp P. M., Higgins D. G., Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. doi: 10.1093/oxfordjournals.molbev.a040525. [DOI] [PubMed] [Google Scholar]
  36. Stenico M., Lloyd A. T., Sharp P. M. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res. 1994 Jul 11;22(13):2437–2446. doi: 10.1093/nar/22.13.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sun F. L., Cuaycong M. H., Craig C. A., Wallrath L. L., Locke J., Elgin S. C. The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5340–5345. doi: 10.1073/pnas.090530797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Whitfield L. S., Lovell-Badge R., Goodfellow P. N. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature. 1993 Aug 19;364(6439):713–715. doi: 10.1038/364713a0. [DOI] [PubMed] [Google Scholar]
  39. Wright F. The 'effective number of codons' used in a gene. Gene. 1990 Mar 1;87(1):23–29. doi: 10.1016/0378-1119(90)90491-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES