Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):407–415. doi: 10.1093/genetics/160.2.407

ATP-dependent remodeling of the spliceosome: intragenic suppressors of release-defective mutants of Saccharomyces cerevisiae Prp22.

Eva Campodonico 1, Beate Schwer 1
PMCID: PMC1461984  PMID: 11861548

Abstract

The essential splicing factor Prp22 is a DEAH-box helicase that catalyzes the release of mRNA from the spliceosome. ATP hydrolysis by Prp22 is necessary but not sufficient for spliceosome disassembly. Previous work showed that mutations in motif III (635SAT637) of Prp22 that uncouple ATP hydrolysis from spliceosome disassembly lead to severe cold-sensitive (cs) growth defects and to impaired RNA unwinding activity in vitro. The cs phenotype of S635A (635AAT) can be suppressed by intragenic mutations that restore RNA unwinding. We now report the isolation and characterization of new intragenic mutations that suppress the cold-sensitive growth phenotypes of the T637A motif III mutation (SAA), the H606A mutation in the DEAH-box (DEAA), and the R805A mutation in motif VI (804QAKGRAGR811). Whereas the T637A and H606A proteins are deficient in releasing mRNA from the spliceosome at nonpermissive temperature in vitro, the suppressor proteins have recovered mRNA release activity. To address the mechanisms of suppression, we tested ATPase and helicase activities of Prp22 suppressor mutant proteins and found that the ability to unwind a 25-bp RNA duplex was not restored in every case. This finding suggests that release of mRNA from the spliceosome is less demanding than unwinding of a 25-bp duplex RNA; the latter reaction presumably reflects the result of several successive cycles of ATP binding, hydrolysis, and unwinding. Increasing the reaction temperature allows H606A and T637A to effect mRNA release in vitro, but does not restore RNA unwinding by T637A.

Full Text

The Full Text of this article is available as a PDF (333.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A., Schwer B. SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J. 1995 Aug 15;14(16):4001–4009. doi: 10.1002/j.1460-2075.1995.tb00071.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen J. Y., Stands L., Staley J. P., Jackups R. R., Jr, Latus L. J., Chang T. H. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol Cell. 2001 Jan;7(1):227–232. doi: 10.1016/s1097-2765(01)00170-8. [DOI] [PubMed] [Google Scholar]
  3. Company M., Arenas J., Abelson J. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature. 1991 Feb 7;349(6309):487–493. doi: 10.1038/349487a0. [DOI] [PubMed] [Google Scholar]
  4. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989 Jun 26;17(12):4713–4730. doi: 10.1093/nar/17.12.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gross C. H., Shuman S. Mutational analysis of vaccinia virus nucleoside triphosphate phosphohydrolase II, a DExH box RNA helicase. J Virol. 1995 Aug;69(8):4727–4736. doi: 10.1128/jvi.69.8.4727-4736.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hall M. C., Matson S. W. Helicase motifs: the engine that powers DNA unwinding. Mol Microbiol. 1999 Dec;34(5):867–877. doi: 10.1046/j.1365-2958.1999.01659.x. [DOI] [PubMed] [Google Scholar]
  7. Heilek G. M., Peterson M. G. A point mutation abolishes the helicase but not the nucleoside triphosphatase activity of hepatitis C virus NS3 protein. J Virol. 1997 Aug;71(8):6264–6266. doi: 10.1128/jvi.71.8.6264-6266.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jankowsky E., Gross C. H., Shuman S., Pyle A. M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science. 2001 Jan 5;291(5501):121–125. doi: 10.1126/science.291.5501.121. [DOI] [PubMed] [Google Scholar]
  9. Kim D. W., Kim J., Gwack Y., Han J. H., Choe J. Mutational analysis of the hepatitis C virus RNA helicase. J Virol. 1997 Dec;71(12):9400–9409. doi: 10.1128/jvi.71.12.9400-9409.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim J. L., Morgenstern K. A., Griffith J. P., Dwyer M. D., Thomson J. A., Murcko M. A., Lin C., Caron P. R. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure. 1998 Jan 15;6(1):89–100. doi: 10.1016/s0969-2126(98)00010-0. [DOI] [PubMed] [Google Scholar]
  11. Kistler A. L., Guthrie C. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for sub2, an essential spliceosomal ATPase. Genes Dev. 2001 Jan 1;15(1):42–49. doi: 10.1101/gad.851301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Martins A., Gross C. H., Shuman S. Mutational analysis of vaccinia virus nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase of the DExH box family. J Virol. 1999 Feb;73(2):1302–1308. doi: 10.1128/jvi.73.2.1302-1308.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  14. Schneider S., Schwer B. Functional domains of the yeast splicing factor Prp22p. J Biol Chem. 2001 Mar 29;276(24):21184–21191. doi: 10.1074/jbc.M101964200. [DOI] [PubMed] [Google Scholar]
  15. Schwer B. A new twist on RNA helicases: DExH/D box proteins as RNPases. Nat Struct Biol. 2001 Feb;8(2):113–116. doi: 10.1038/84091. [DOI] [PubMed] [Google Scholar]
  16. Schwer B., Gross C. H. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J. 1998 Apr 1;17(7):2086–2094. doi: 10.1093/emboj/17.7.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwer B., Meszaros T. RNA helicase dynamics in pre-mRNA splicing. EMBO J. 2000 Dec 1;19(23):6582–6591. doi: 10.1093/emboj/19.23.6582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wagner J. D., Jankowsky E., Company M., Pyle A. M., Abelson J. N. The DEAH-box protein PRP22 is an ATPase that mediates ATP-dependent mRNA release from the spliceosome and unwinds RNA duplexes. EMBO J. 1998 May 15;17(10):2926–2937. doi: 10.1093/emboj/17.10.2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yao N., Hesson T., Cable M., Hong Z., Kwong A. D., Le H. V., Weber P. C. Structure of the hepatitis C virus RNA helicase domain. Nat Struct Biol. 1997 Jun;4(6):463–467. doi: 10.1038/nsb0697-463. [DOI] [PubMed] [Google Scholar]
  20. de la Cruz J., Kressler D., Linder P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci. 1999 May;24(5):192–198. doi: 10.1016/s0968-0004(99)01376-6. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES