Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):675–682. doi: 10.1093/genetics/160.2.675

A haplolethal locus uncovered by deletions in the mouse T complex.

Victoria L Browning 1, Rebecca A Bergstrom 1, Sandra Daigle 1, John C Schimenti 1
PMCID: PMC1461990  PMID: 11861570

Abstract

Proper levels of gene expression are important for normal mammalian development. Typically, altered gene dosage caused by karyotypic abnormalities results in embryonic lethality or birth defects. Segmental aneuploidy can be compatible with life but often results in contiguous gene syndromes. The ability to manipulate the mouse genome allows the systematic exploration of regions that are affected by alterations in gene dosage. To explore the effects of segmental haploidy in the mouse t complex on chromosome 17, radiation-induced deletion complexes centered at the Sod2 and D17Leh94 loci were generated in embryonic stem (ES) cells. A small interval was identified that, when hemizygous, caused specific embryonic lethal phenotypes (exencephaly and edema) in most fetuses. The penetrance of these phenotypes was background dependent. Additionally, evidence for parent-of-origin effects was observed. This genetic approach should be useful for identifying genes that are imprinted or whose dosage is critical for normal embryonic development.

Full Text

The Full Text of this article is available as a PDF (158.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos-Landgraf J. M., Ji Y., Gottlieb W., Depinet T., Wandstrat A. E., Cassidy S. B., Driscoll D. J., Rogan P. K., Schwartz S., Nicholls R. D. Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. Am J Hum Genet. 1999 Aug;65(2):370–386. doi: 10.1086/302510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bieker J. J. Krüppel-like factors: three fingers in many pies. J Biol Chem. 2001 Jul 6;276(37):34355–34358. doi: 10.1074/jbc.R100043200. [DOI] [PubMed] [Google Scholar]
  3. Bourgeois P., Bolcato-Bellemin A. L., Danse J. M., Bloch-Zupan A., Yoshiba K., Stoetzel C., Perrin-Schmitt F. The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome. Hum Mol Genet. 1998 Jun;7(6):945–957. doi: 10.1093/hmg/7.6.945. [DOI] [PubMed] [Google Scholar]
  4. Brewer C., Holloway S., Zawalnyski P., Schinzel A., FitzPatrick D. A chromosomal duplication map of malformations: regions of suspected haplo- and triplolethality--and tolerance of segmental aneuploidy--in humans. Am J Hum Genet. 1999 Jun;64(6):1702–1708. doi: 10.1086/302410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M., Fahrig M., Vandenhoeck A., Harpal K., Eberhardt C. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996 Apr 4;380(6573):435–439. doi: 10.1038/380435a0. [DOI] [PubMed] [Google Scholar]
  6. Cattanach B. M., Burtenshaw M. D., Rasberry C., Evans E. P. Large deletions and other gross forms of chromosome imbalance compatible with viability and fertility in the mouse. Nat Genet. 1993 Jan;3(1):56–61. doi: 10.1038/ng0193-56. [DOI] [PubMed] [Google Scholar]
  7. Dunn N. R., Winnier G. E., Hargett L. K., Schrick J. J., Fogo A. B., Hogan B. L. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol. 1997 Aug 15;188(2):235–247. doi: 10.1006/dbio.1997.8664. [DOI] [PubMed] [Google Scholar]
  8. Ferrara N., Carver-Moore K., Chen H., Dowd M., Lu L., O'Shea K. S., Powell-Braxton L., Hillan K. J., Moore M. W. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996 Apr 4;380(6573):439–442. doi: 10.1038/380439a0. [DOI] [PubMed] [Google Scholar]
  9. Gabriel J. M., Merchant M., Ohta T., Ji Y., Caldwell R. G., Ramsey M. J., Tucker J. D., Longnecker R., Nicholls R. D. A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and angelman syndromes. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9258–9263. doi: 10.1073/pnas.96.16.9258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li L., Krantz I. D., Deng Y., Genin A., Banta A. B., Collins C. C., Qi M., Trask B. J., Kuo W. L., Cochran J. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997 Jul;16(3):243–251. doi: 10.1038/ng0797-243. [DOI] [PubMed] [Google Scholar]
  11. Lindsay E. A., Botta A., Jurecic V., Carattini-Rivera S., Cheah Y. C., Rosenblatt H. M., Bradley A., Baldini A. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature. 1999 Sep 23;401(6751):379–383. doi: 10.1038/43900. [DOI] [PubMed] [Google Scholar]
  12. Lindsay E. A., Vitelli F., Su H., Morishima M., Huynh T., Pramparo T., Jurecic V., Ogunrinu G., Sutherland H. F., Scambler P. J. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001 Mar 1;410(6824):97–101. doi: 10.1038/35065105. [DOI] [PubMed] [Google Scholar]
  13. Merscher S., Funke B., Epstein J. A., Heyer J., Puech A., Lu M. M., Xavier R. J., Demay M. B., Russell R. G., Factor S. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001 Feb 23;104(4):619–629. doi: 10.1016/s0092-8674(01)00247-1. [DOI] [PubMed] [Google Scholar]
  14. Näf D., Wilson L. A., Bergstrom R. A., Smith R. S., Goodwin N. C., Verkerk A., van Ommen G. J., Ackerman S. L., Frankel W. N., Schimenti J. C. Mouse models for the Wolf-Hirschhorn deletion syndrome. Hum Mol Genet. 2001 Jan 15;10(2):91–98. doi: 10.1093/hmg/10.2.91. [DOI] [PubMed] [Google Scholar]
  15. Oda T., Elkahloun A. G., Pike B. L., Okajima K., Krantz I. D., Genin A., Piccoli D. A., Meltzer P. S., Spinner N. B., Collins F. S. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997 Jul;16(3):235–242. doi: 10.1038/ng0797-235. [DOI] [PubMed] [Google Scholar]
  16. Paine-Saunders S., Viviano B. L., Zupicich J., Skarnes W. C., Saunders S. glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev Biol. 2000 Sep 1;225(1):179–187. doi: 10.1006/dbio.2000.9831. [DOI] [PubMed] [Google Scholar]
  17. Prado A., Canal I., Ferrús A. The haplolethal region at the 16F gene cluster of Drosophila melanogaster: structure and function. Genetics. 1999 Jan;151(1):163–175. doi: 10.1093/genetics/151.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rogers I., Okano K., Varmuza S. Paternal transmission of the mouse Thp mutation is lethal in some genetic backgrounds. Dev Genet. 1997;20(1):23–28. doi: 10.1002/(SICI)1520-6408(1997)20:1<23::AID-DVG3>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  19. Röhme D., Fox H., Herrmann B., Frischauf A. M., Edström J. E., Mains P., Silver L. M., Lehrach H. Molecular clones of the mouse t complex derived from microdissected metaphase chromosomes. Cell. 1984 Mar;36(3):783–788. doi: 10.1016/0092-8674(84)90358-1. [DOI] [PubMed] [Google Scholar]
  20. Silver L. M. Mouse t haplotypes. Annu Rev Genet. 1985;19:179–208. doi: 10.1146/annurev.ge.19.120185.001143. [DOI] [PubMed] [Google Scholar]
  21. Tsai T. F., Jiang Y. H., Bressler J., Armstrong D., Beaudet A. L. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum Mol Genet. 1999 Aug;8(8):1357–1364. doi: 10.1093/hmg/8.8.1357. [DOI] [PubMed] [Google Scholar]
  22. Urbán Z., Helms C., Fekete G., Csiszár K., Bonnet D., Munnich A., Donis-Keller H., Boyd C. D. 7q11.23 deletions in Williams syndrome arise as a consequence of unequal meiotic crossover. Am J Hum Genet. 1996 Oct;59(4):958–962. [PMC free article] [PubMed] [Google Scholar]
  23. Wilm B., Dahl E., Peters H., Balling R., Imai K. Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8692–8697. doi: 10.1073/pnas.95.15.8692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. You Y., Bersgtram R., Klemm M., Nelson H., Jaenisch R., Schimenti J. Utility of C57BL/6J x 129/SvJae embryonic stem cells for generating chromosomal deletions: tolerance to gamma radiation and microsatellite polymorphism. Mamm Genome. 1998 Mar;9(3):232–234. doi: 10.1007/s003359900731. [DOI] [PubMed] [Google Scholar]
  25. You Y., Browning V. L., Schimenti J. C. Generation of radiation-induced deletion complexes in the mouse genome using embryonic stem cells. Methods. 1997 Dec;13(4):409–421. doi: 10.1006/meth.1997.0547. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES