Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):463–470. doi: 10.1093/genetics/160.2.463

RNA interference in the pathogenic fungus Cryptococcus neoformans.

Hong Liu 1, Tricia R Cottrell 1, Lynda M Pierini 1, William E Goldman 1, Tamara L Doering 1
PMCID: PMC1461992  PMID: 11861553

Abstract

Cryptococcus neoformans is a pathogenic fungus responsible for serious disease in immunocompromised individuals. This organism has recently been developed as an experimental system, with initiation of a genome project among other molecular advances. However, investigations of Cryptococcus are hampered by the technical difficulty of specific gene replacements. RNA interference, a process in which the presence of double-stranded RNA homologous to a gene of interest results in specific degradation of the corresponding message, may help solve this problem. We have shown that expression of double-stranded RNA corresponding to portions of the cryptococcal CAP59 and ADE2 genes results in reduced mRNA levels for those genes, with phenotypic consequences similar to that of gene disruption. The two genes could also be subjected to simultaneous interference through expression of chimeric double-stranded RNA. Specific modulation of protein expression through introduction of double-stranded RNA thus operates in C. neoformans, which is the first demonstration of this technique in a fungal organism. Use of RNA interference in Cryptococcus should allow manipulation of mRNA levels for functional analysis of genes of interest and enable efficient exploration of genes discovered by genome sequencing.

Full Text

The Full Text of this article is available as a PDF (172.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bass B. L. Double-stranded RNA as a template for gene silencing. Cell. 2000 Apr 28;101(3):235–238. doi: 10.1016/s0092-8674(02)71133-1. [DOI] [PubMed] [Google Scholar]
  3. Bastin P., Ellis K., Kohl L., Gull K. Flagellum ontogeny in trypanosomes studied via an inherited and regulated RNA interference system. J Cell Sci. 2000 Sep;113(Pt 18):3321–3328. doi: 10.1242/jcs.113.18.3321. [DOI] [PubMed] [Google Scholar]
  4. Baulcombe D. RNA silencing. Diced defence. Nature. 2001 Jan 18;409(6818):295–296. doi: 10.1038/35053256. [DOI] [PubMed] [Google Scholar]
  5. Carthew R. W. Gene silencing by double-stranded RNA. Curr Opin Cell Biol. 2001 Apr;13(2):244–248. doi: 10.1016/s0955-0674(00)00204-0. [DOI] [PubMed] [Google Scholar]
  6. Catalanotto C., Azzalin G., Macino G., Cogoni C. Gene silencing in worms and fungi. Nature. 2000 Mar 16;404(6775):245–245. doi: 10.1038/35005169. [DOI] [PubMed] [Google Scholar]
  7. Chang Y. C., Kwon-Chung K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 1994 Jul;14(7):4912–4919. doi: 10.1128/mcb.14.7.4912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edman J. C. Isolation of telomerelike sequences from Cryptococcus neoformans and their use in high-efficiency transformation. Mol Cell Biol. 1992 Jun;12(6):2777–2783. doi: 10.1128/mcb.12.6.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edman J. C., Kwon-Chung K. J. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 1990 Sep;10(9):4538–4544. doi: 10.1128/mcb.10.9.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May 24;411(6836):494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
  11. Fagard M., Boutet S., Morel J. B., Bellini C., Vaucheret H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11650–11654. doi: 10.1073/pnas.200217597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  13. Kennerdell J. R., Carthew R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol. 2000 Aug;18(8):896–898. doi: 10.1038/78531. [DOI] [PubMed] [Google Scholar]
  14. Kuwabara P. E., Coulson A. RNAi--prospects for a general technique for determining gene function. Parasitol Today. 2000 Aug;16(8):347–349. doi: 10.1016/s0169-4758(00)01677-x. [DOI] [PubMed] [Google Scholar]
  15. Kwon-Chung K. J. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia. 1976 Jul-Aug;68(4):821–833. [PubMed] [Google Scholar]
  16. Müller C. R., European Molecular Genetics Quality Network Quality control in mutation analysis: the European Molecular Genetics Quality Network (EMQN). Eur J Pediatr. 2001 Aug;160(8):464–467. doi: 10.1007/s004310100767. [DOI] [PubMed] [Google Scholar]
  17. Parrish S., Fleenor J., Xu S., Mello C., Fire A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. 2000 Nov;6(5):1077–1087. doi: 10.1016/s1097-2765(00)00106-4. [DOI] [PubMed] [Google Scholar]
  18. Pierini L. M., Doering T. L. Spatial and temporal sequence of capsule construction in Cryptococcus neoformans. Mol Microbiol. 2001 Jul;41(1):105–115. doi: 10.1046/j.1365-2958.2001.02504.x. [DOI] [PubMed] [Google Scholar]
  19. Sharp P. A. RNAi and double-strand RNA. Genes Dev. 1999 Jan 15;13(2):139–141. [PubMed] [Google Scholar]
  20. Svoboda P., Stein P., Hayashi H., Schultz R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 2000 Oct;127(19):4147–4156. doi: 10.1242/dev.127.19.4147. [DOI] [PubMed] [Google Scholar]
  21. Tabara H., Grishok A., Mello C. C. RNAi in C. elegans: soaking in the genome sequence. Science. 1998 Oct 16;282(5388):430–431. doi: 10.1126/science.282.5388.430. [DOI] [PubMed] [Google Scholar]
  22. Tabara H., Sarkissian M., Kelly W. G., Fleenor J., Grishok A., Timmons L., Fire A., Mello C. C. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 1999 Oct 15;99(2):123–132. doi: 10.1016/s0092-8674(00)81644-x. [DOI] [PubMed] [Google Scholar]
  23. Timmons L., Fire A. Specific interference by ingested dsRNA. Nature. 1998 Oct 29;395(6705):854–854. doi: 10.1038/27579. [DOI] [PubMed] [Google Scholar]
  24. Toffaletti D. L., Rude T. H., Johnston S. A., Durack D. T., Perfect J. R. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol. 1993 Mar;175(5):1405–1411. doi: 10.1128/jb.175.5.1405-1411.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vaucheret H., Béclin C., Fagard M. Post-transcriptional gene silencing in plants. J Cell Sci. 2001 Sep;114(Pt 17):3083–3091. doi: 10.1242/jcs.114.17.3083. [DOI] [PubMed] [Google Scholar]
  26. Wianny F., Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. 2000 Feb;2(2):70–75. doi: 10.1038/35000016. [DOI] [PubMed] [Google Scholar]
  27. Wickes B. L., Edman U., Edman J. C. The Cryptococcus neoformans STE12alpha gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific. Mol Microbiol. 1997 Dec;26(5):951–960. doi: 10.1046/j.1365-2958.1997.6322001.x. [DOI] [PubMed] [Google Scholar]
  28. Williams B. R. PKR; a sentinel kinase for cellular stress. Oncogene. 1999 Nov 1;18(45):6112–6120. doi: 10.1038/sj.onc.1203127. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES