Abstract
The widespread use of the maize Mutator (Mu) system to generate mutants exploits the preference of Mu transposons to insert into genic regions. However, little is known about the specificity of Mu insertions within genes. Analysis of 79 independently isolated Mu-induced alleles at the gl8 locus established that at least 75 contain Mu insertions. Analysis of the terminal inverted repeats (TIRs) of the inserted transposons defined three new Mu transposons: Mu10, Mu 11, and Mu12. A large percentage (>80%) of the insertions are located in the 5' untranslated region (UTR) of the gl8 gene. Ten positions within the 5' UTR experienced multiple independent Mu insertions. Analyses of the nucleotide composition of the 9-bp TSD and the sequences directly flanking the TSD reveals that the nucleotide composition of Mu insertion sites differs dramatically from that of random DNA. In particular, the frequencies at which C's and G's are observed at positions -2 and +2 (relative to the TSD) are substantially higher than expected. Insertion sites of 315 RescueMu insertions displayed the same nonrandom nucleotide composition observed for the gl8-Mu alleles. Hence, this study provides strong evidence for the involvement of sequences flanking the TSD in Mu insertion-site selection.
Full Text
The Full Text of this article is available as a PDF (431.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alleman M., Freeling M. The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics. 1986 Jan;112(1):107–119. doi: 10.1093/genetics/112.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker R. F., Thompson D. V., Talbot D. R., Swanson J., Bennetzen J. L. Nucleotide sequence of the maize transposable element Mul. Nucleic Acids Res. 1984 Aug 10;12(15):5955–5967. doi: 10.1093/nar/12.15.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benito M. I., Walbot V. Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol Cell Biol. 1997 Sep;17(9):5165–5175. doi: 10.1128/mcb.17.9.5165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britt A. B., Walbot V. Germinal and somatic products of Mu1 excision from the Bronze-1 gene of Zea mays. Mol Gen Genet. 1991 Jun;227(2):267–276. doi: 10.1007/BF00259680. [DOI] [PubMed] [Google Scholar]
- Brown W. E., Robertson D. S., Bennetzen J. L. Molecular analysis of multiple mutator-derived alleles of the bronze locus of maize. Genetics. 1989 Jun;122(2):439–445. doi: 10.1093/genetics/122.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brukner I., Sánchez R., Suck D., Pongor S. Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides. EMBO J. 1995 Apr 18;14(8):1812–1818. doi: 10.1002/j.1460-2075.1995.tb07169.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bureau T. E., Wessler S. R. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell. 1994 Jun;6(6):907–916. doi: 10.1105/tpc.6.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bureau T. E., Wessler S. R. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell. 1992 Oct;4(10):1283–1294. doi: 10.1105/tpc.4.10.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carels N, Hatey P, Jabbari K, Bernardi G. Compositional properties of homologous coding sequences from plants . J Mol Evol. 1998 Jan;46(1):45–53. doi: 10.1007/pl00006282. [DOI] [PubMed] [Google Scholar]
- Chandler V. L., Hardeman K. J. The Mu elements of Zea mays. Adv Genet. 1992;30:77–122. doi: 10.1016/s0065-2660(08)60319-3. [DOI] [PubMed] [Google Scholar]
- Chen C. H., Oishi K. K., Kloeckener-Gruissem B., Freeling M. Organ-specific expression of maize Adh1 is altered after a Mu transposon insertion. Genetics. 1987 Jul;116(3):469–477. doi: 10.1093/genetics/116.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomet P., Lisch D., Hardeman K. J., Chandler V. L., Freeling M. Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics. 1991 Sep;129(1):261–270. doi: 10.1093/genetics/129.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cresse A. D., Hulbert S. H., Brown W. E., Lucas J. R., Bennetzen J. L. Mu1-related transposable elements of maize preferentially insert into low copy number DNA. Genetics. 1995 May;140(1):315–324. doi: 10.1093/genetics/140.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das L., Martienssen R. Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell. 1995 Mar;7(3):287–294. doi: 10.1105/tpc.7.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doseff A., Martienssen R., Sundaresan V. Somatic excision of the Mu1 transposable element of maize. Nucleic Acids Res. 1991 Feb 11;19(3):579–584. doi: 10.1093/nar/19.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorin A. A., Zhurkin V. B., Olson W. K. B-DNA twisting correlates with base-pair morphology. J Mol Biol. 1995 Mar 17;247(1):34–48. doi: 10.1006/jmbi.1994.0120. [DOI] [PubMed] [Google Scholar]
- Greene B., Walko R., Hake S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics. 1994 Dec;138(4):1275–1285. doi: 10.1093/genetics/138.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanley S., Edwards D., Stevenson D., Haines S., Hegarty M., Schuch W., Edwards K. J. Identification of transposon-tagged genes by the random sequencing of Mutator-tagged DNA fragments from Zea mays. Plant J. 2000 Aug;23(4):557–566. doi: 10.1046/j.1365-313x.2000.00830.x. [DOI] [PubMed] [Google Scholar]
- Hardeman K. J., Chandler V. L. Characterization of bz1 mutants isolated from mutator stocks with high and low numbers of Mu1 elements. Dev Genet. 1989;10(6):460–472. doi: 10.1002/dvg.1020100607. [DOI] [PubMed] [Google Scholar]
- Hardeman K. J., Chandler V. L. Two maize genes are each targeted predominantly by distinct classes of Mu elements. Genetics. 1993 Dec;135(4):1141–1150. doi: 10.1093/genetics/135.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hershberger R. J., Warren C. A., Walbot V. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10198–10202. doi: 10.1073/pnas.88.22.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsia A. P., Schnable P. S. DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics. 1996 Feb;142(2):603–618. doi: 10.1093/genetics/142.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lampe D. J., Grant T. E., Robertson H. M. Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics. 1998 May;149(1):179–187. doi: 10.1093/genetics/149.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy A. A., Walbot V. Molecular analysis of the loss of somatic instability in the bz2::mu1 allele of maize. Mol Gen Genet. 1991 Sep;229(1):147–151. doi: 10.1007/BF00264223. [DOI] [PubMed] [Google Scholar]
- Liao G. C., Rehm E. J., Rubin G. M. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3347–3351. doi: 10.1073/pnas.050017397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu X. J., Shakked Z., Olson W. K. A-form conformational motifs in ligand-bound DNA structures. J Mol Biol. 2000 Jul 21;300(4):819–840. doi: 10.1006/jmbi.2000.3690. [DOI] [PubMed] [Google Scholar]
- Müller H. P., Varmus H. E. DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. EMBO J. 1994 Oct 3;13(19):4704–4714. doi: 10.1002/j.1460-2075.1994.tb06794.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson W. K., Gorin A. A., Lu X. J., Hock L. M., Zhurkin V. B. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11163–11168. doi: 10.1073/pnas.95.19.11163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otwinowski Z., Schevitz R. W., Zhang R. G., Lawson C. L., Joachimiak A., Marmorstein R. Q., Luisi B. F., Sigler P. B. Crystal structure of trp repressor/operator complex at atomic resolution. Nature. 1988 Sep 22;335(6188):321–329. doi: 10.1038/335321a0. [DOI] [PubMed] [Google Scholar]
- Qin M. M., Robertson D. S., Ellingboe A. H. Cloning of the Mutator transposable element MuA2, a putative regulator of somatic mutability of the a1-Mum2 allele in maize. Genetics. 1991 Nov;129(3):845–854. doi: 10.1093/genetics/129.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raizada M. N., Nan G. L., Walbot V. Somatic and germinal mobility of the RescueMu transposon in transgenic maize. Plant Cell. 2001 Jul;13(7):1587–1608. doi: 10.1105/TPC.010002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raizada M. N., Walbot V. The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S -driven MURA cDNA in transgenic maize. Plant Cell. 2000 Jan;12(1):5–21. doi: 10.1105/tpc.12.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowland L. J., Strommer J. N. Insertion of an unstable element in an intervening sequence of maize Adh1 affects transcription but not processing. Proc Natl Acad Sci U S A. 1985 May;82(9):2875–2879. doi: 10.1073/pnas.82.9.2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salinas J., Matassi G., Montero L. M., Bernardi G. Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucleic Acids Res. 1988 May 25;16(10):4269–4285. doi: 10.1093/nar/16.10.4269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnable P. S., Peterson P. A., Saedler H. The bz-rcy allele of the Cy transposable element system of Zea mays contains a Mu-like element insertion. Mol Gen Genet. 1989 Jun;217(2-3):459–463. doi: 10.1007/BF02464917. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Stern D. M., Kiss I., Roote J., Laverty T., Rubin G. M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stinard P. S., Robertson D. S., Schnable P. S. Genetic Isolation, Cloning, and Analysis of a Mutator-Induced, Dominant Antimorph of the Maize amylose extender1 Locus. Plant Cell. 1993 Nov;5(11):1555–1566. doi: 10.1105/tpc.5.11.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talbert L. E., Patterson G. I., Chandler V. L. Mu transposable elements are structurally diverse and distributed throughout the genus Zea. J Mol Evol. 1989 Jul;29(1):28–39. doi: 10.1007/BF02106179. [DOI] [PubMed] [Google Scholar]
- Taylor L. P., Walbot V. Isolation and characterization of a 1.7-kb transposable element from a mutator line of maize. Genetics. 1987 Oct;117(2):297–307. doi: 10.1093/genetics/117.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turcotte K., Srinivasan S., Bureau T. Survey of transposable elements from rice genomic sequences. Plant J. 2001 Jan;25(2):169–179. doi: 10.1046/j.1365-313x.2001.00945.x. [DOI] [PubMed] [Google Scholar]
- Xu X., Dietrich C. R., Delledonne M., Xia Y., Wen T. J., Robertson D. S., Nikolau B. J., Schnable P. S. Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a beta-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol. 1997 Oct;115(2):501–510. doi: 10.1104/pp.115.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Z., Wright S. I., Bureau T. E. Mutator-like elements in Arabidopsis thaliana. Structure, diversity and evolution. Genetics. 2000 Dec;156(4):2019–2031. doi: 10.1093/genetics/156.4.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Q., Arbuckle J., Wessler S. R. Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1160–1165. doi: 10.1073/pnas.97.3.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
