Skip to main content
Genetics logoLink to Genetics
. 2002 Mar;160(3):877–889. doi: 10.1093/genetics/160.3.877

Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD(+) salvage pathway.

Joseph J Sandmeier 1, Ivana Celic 1, Jef D Boeke 1, Jeffrey S Smith 1
PMCID: PMC1462005  PMID: 11901108

Abstract

The Sir2 protein is an NAD(+)-dependent protein deacetylase that is required for silencing at the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA). Mutations in the NAD(+) salvage gene NPT1 weaken all three forms of silencing and also cause a reduction in the intracellular NAD(+) level. We now show that mutation of a highly conserved histidine residue in Npt1p results in a silencing defect, indicating that Npt1p enzymatic activity is required for silencing. Deletion of another NAD(+) salvage pathway gene called PNC1 caused a less severe silencing defect and did not significantly reduce the intracellular NAD(+) concentration. However, silencing in the absence of PNC1 was completely dependent on the import of nicotinic acid from the growth medium. Deletion of a gene in the de novo NAD(+) synthesis pathway BNA1 resulted in a significant rDNA silencing defect only on medium deficient in nicotinic acid, an NAD(+) precursor. By immunofluorescence microscopy, Myc-tagged Bna1p was localized throughout the whole cell in an asynchronously growing population. In contrast, Myc-tagged Npt1p was highly concentrated in the nucleus in approximately 40% of the cells, indicating that NAD(+) salvage occurs in the nucleus in a significant fraction of cells. We propose a model in which two components of the NAD(+) salvage pathway, Pnc1p and Npt1p, function together in recycling the nuclear nicotinamide generated by Sir2p deacetylase activity back into NAD(+).

Full Text

The Full Text of this article is available as a PDF (743.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aparicio O. M., Gottschling D. E. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 1994 May 15;8(10):1133–1146. doi: 10.1101/gad.8.10.1133. [DOI] [PubMed] [Google Scholar]
  2. Balducci E., Emanuelli M., Magni G., Raffaelli N., Ruggieri S., Vita A., Natalini P. Nuclear matrix-associated NMN adenylyltransferase activity in human placenta. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1275–1279. doi: 10.1016/0006-291x(92)90211-3. [DOI] [PubMed] [Google Scholar]
  3. Baudin A., Ozier-Kalogeropoulos O., Denouel A., Lacroute F., Cullin C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Jul 11;21(14):3329–3330. doi: 10.1093/nar/21.14.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger N. A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985 Jan;101(1):4–15. [PubMed] [Google Scholar]
  5. Bernstein B. E., Tong J. K., Schreiber S. L. Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13708–13713. doi: 10.1073/pnas.250477697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998 Jan 30;14(2):115–132. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  7. Brachmann C. B., Sherman J. M., Devine S. E., Cameron E. E., Pillus L., Boeke J. D. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995 Dec 1;9(23):2888–2902. doi: 10.1101/gad.9.23.2888. [DOI] [PubMed] [Google Scholar]
  8. Braunstein M., Rose A. B., Holmes S. G., Allis C. D., Broach J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 1993 Apr;7(4):592–604. doi: 10.1101/gad.7.4.592. [DOI] [PubMed] [Google Scholar]
  9. Bryk M., Banerjee M., Murphy M., Knudsen K. E., Garfinkel D. J., Curcio M. J. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 1997 Jan 15;11(2):255–269. doi: 10.1101/gad.11.2.255. [DOI] [PubMed] [Google Scholar]
  10. Cantarow W., Stollar B. D. Nicotinamide mononucleotide adenylytransferase, a nonhistone chromatin protein. Purification and properties of the chicken erythrocyte enzyme. Arch Biochem Biophys. 1977 Apr 15;180(1):26–34. doi: 10.1016/0003-9861(77)90004-2. [DOI] [PubMed] [Google Scholar]
  11. Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992 Jan 2;110(1):119–122. doi: 10.1016/0378-1119(92)90454-w. [DOI] [PubMed] [Google Scholar]
  12. Cost G. J., Boeke J. D. A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15. Yeast. 1996 Aug;12(10):939–941. doi: 10.1002/(SICI)1097-0061(199608)12:10%3C939::AID-YEA988%3E3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  13. Derbyshire M. K., Weinstock K. G., Strathern J. N. HST1, a new member of the SIR2 family of genes. Yeast. 1996 Jun 15;12(7):631–640. doi: 10.1002/(SICI)1097-0061(19960615)12:7%3C631::AID-YEA960%3E3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  14. Emanuelli M., Carnevali F., Lorenzi M., Raffaelli N., Amici A., Ruggieri S., Magni G. Identification and characterization of YLR328W, the Saccharomyces cerevisiae structural gene encoding NMN adenylyltransferase. Expression and characterization of the recombinant enzyme. FEBS Lett. 1999 Jul 16;455(1-2):13–17. doi: 10.1016/s0014-5793(99)00852-2. [DOI] [PubMed] [Google Scholar]
  15. Fritze C. E., Verschueren K., Strich R., Easton Esposito R. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J. 1997 Nov 3;16(21):6495–6509. doi: 10.1093/emboj/16.21.6495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frothingham R., Meeker-O'Connell W. A., Talbot E. A., George J. W., Kreuzer K. N. Identification, cloning, and expression of the Escherichia coli pyrazinamidase and nicotinamidase gene, pncA. Antimicrob Agents Chemother. 1996 Jun;40(6):1426–1431. doi: 10.1128/aac.40.6.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Frye R. A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999 Jun 24;260(1):273–279. doi: 10.1006/bbrc.1999.0897. [DOI] [PubMed] [Google Scholar]
  18. Gottschling D. E., Aparicio O. M., Billington B. L., Zakian V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 1990 Nov 16;63(4):751–762. doi: 10.1016/0092-8674(90)90141-z. [DOI] [PubMed] [Google Scholar]
  19. Gottschling D. E. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4062–4065. doi: 10.1073/pnas.89.9.4062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000 May 1;14(9):1021–1026. [PubMed] [Google Scholar]
  21. HOGEBOOM G. H., SCHNEIDER W. C. Cytochemical studies. VI. The synthesis of diphosphopyridine nucleotide by liver cell nuclei. J Biol Chem. 1952 May;197(2):611–620. [PubMed] [Google Scholar]
  22. Imai S., Armstrong C. M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403(6771):795–800. doi: 10.1038/35001622. [DOI] [PubMed] [Google Scholar]
  23. Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999 Oct 1;13(19):2570–2580. doi: 10.1101/gad.13.19.2570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kucharczyk R., Zagulski M., Rytka J., Herbert C. J. The yeast gene YJR025c encodes a 3-hydroxyanthranilic acid dioxygenase and is involved in nicotinic acid biosynthesis. FEBS Lett. 1998 Mar 13;424(3):127–130. doi: 10.1016/s0014-5793(98)00153-7. [DOI] [PubMed] [Google Scholar]
  25. Lalo D., Carles C., Sentenac A., Thuriaux P. Interactions between three common subunits of yeast RNA polymerases I and III. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5524–5528. doi: 10.1073/pnas.90.12.5524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  27. Landry J., Slama J. T., Sternglanz R. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins. Biochem Biophys Res Commun. 2000 Nov 30;278(3):685–690. doi: 10.1006/bbrc.2000.3854. [DOI] [PubMed] [Google Scholar]
  28. Landry J., Sutton A., Tafrov S. T., Heller R. C., Stebbins J., Pillus L., Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807–5811. doi: 10.1073/pnas.110148297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lin S. J., Defossez P. A., Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000 Sep 22;289(5487):2126–2128. doi: 10.1126/science.289.5487.2126. [DOI] [PubMed] [Google Scholar]
  30. Llorente B., Dujon B. Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett. 2000 Jun 23;475(3):237–241. doi: 10.1016/s0014-5793(00)01698-7. [DOI] [PubMed] [Google Scholar]
  31. Loo S., Rine J. Silencers and domains of generalized repression. Science. 1994 Jun 17;264(5166):1768–1771. doi: 10.1126/science.8209257. [DOI] [PubMed] [Google Scholar]
  32. Loo S., Rine J. Silencing and heritable domains of gene expression. Annu Rev Cell Dev Biol. 1995;11:519–548. doi: 10.1146/annurev.cb.11.110195.002511. [DOI] [PubMed] [Google Scholar]
  33. Lorenz M. C., Muir R. S., Lim E., McElver J., Weber S. C., Heitman J. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene. 1995 May 26;158(1):113–117. doi: 10.1016/0378-1119(95)00144-u. [DOI] [PubMed] [Google Scholar]
  34. Magni G., Raffaelli N., Emanuelli M., Amici A., Natalini P., Ruggieri S. Nicotinamide-mononucleotide adenylyltransferases from yeast and other microorganisms. Methods Enzymol. 1997;280:248–255. doi: 10.1016/s0076-6879(97)80116-4. [DOI] [PubMed] [Google Scholar]
  35. Manser T., Olivera B. M., Haugli F. B. NAD turnover in microplasmodia of physarum polycephalum. J Cell Physiol. 1980 Mar;102(3):379–384. doi: 10.1002/jcp.1041020312. [DOI] [PubMed] [Google Scholar]
  36. Park U. E., Olivera B. M., Hughes K. T., Roth J. R., Hillyard D. R. DNA ligase and the pyridine nucleotide cycle in Salmonella typhimurium. J Bacteriol. 1989 Apr;171(4):2173–2180. doi: 10.1128/jb.171.4.2173-2180.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rajavel M., Lalo D., Gross J. W., Grubmeyer C. Conversion of a cosubstrate to an inhibitor: phosphorylation mutants of nicotinic acid phosphoribosyltransferase. Biochemistry. 1998 Mar 24;37(12):4181–4188. doi: 10.1021/bi9720134. [DOI] [PubMed] [Google Scholar]
  38. Rechsteiner M., Catanzarite V. The biosynthesis and turnover of nicotinamide adenine dinucleotide in enucleated culture cells. J Cell Physiol. 1974 Dec;84(3):409–422. doi: 10.1002/jcp.1040840309. [DOI] [PubMed] [Google Scholar]
  39. Sauve A. A., Celic I., Avalos J., Deng H., Boeke J. D., Schramm V. L. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry. 2001 Dec 25;40(51):15456–15463. doi: 10.1021/bi011858j. [DOI] [PubMed] [Google Scholar]
  40. Smith J. S., Boeke J. D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 1997 Jan 15;11(2):241–254. doi: 10.1101/gad.11.2.241. [DOI] [PubMed] [Google Scholar]
  41. Smith J. S., Brachmann C. B., Celic I., Kenna M. A., Muhammad S., Starai V. J., Avalos J. L., Escalante-Semerena J. C., Grubmeyer C., Wolberger C. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6658–6663. doi: 10.1073/pnas.97.12.6658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sterner D. E., Berger S. L. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000 Jun;64(2):435–459. doi: 10.1128/mmbr.64.2.435-459.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Straight A. F., Shou W., Dowd G. J., Turck C. W., Deshaies R. J., Johnson A. D., Moazed D. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell. 1999 Apr 16;97(2):245–256. doi: 10.1016/s0092-8674(00)80734-5. [DOI] [PubMed] [Google Scholar]
  44. Tanner K. G., Landry J., Sternglanz R., Denu J. M. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14178–14182. doi: 10.1073/pnas.250422697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tanny J. C., Dowd G. J., Huang J., Hilz H., Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell. 1999 Dec 23;99(7):735–745. doi: 10.1016/s0092-8674(00)81671-2. [DOI] [PubMed] [Google Scholar]
  46. Tanny J. C., Moazed D. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. Proc Natl Acad Sci U S A. 2000 Dec 26;98(2):415–420. doi: 10.1073/pnas.031563798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tsang A. W., Escalante-Semerena J. C. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem. 1998 Nov 27;273(48):31788–31794. doi: 10.1074/jbc.273.48.31788. [DOI] [PubMed] [Google Scholar]
  48. Vinitsky A., Grubmeyer C. A new paradigm for biochemical energy coupling. Salmonella typhimurium nicotinate phosphoribosyltransferase. J Biol Chem. 1993 Dec 5;268(34):26004–26010. [PubMed] [Google Scholar]
  49. Xie J., Pierce M., Gailus-Durner V., Wagner M., Winter E., Vershon A. K. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J. 1999 Nov 15;18(22):6448–6454. doi: 10.1093/emboj/18.22.6448. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES