Skip to main content
Genetics logoLink to Genetics
. 2002 Mar;160(3):1107–1112. doi: 10.1093/genetics/160.3.1107

Multiple effects of genetic background on variegated transgene expression in mice.

Margaret L Opsahl 1, Margaret McClenaghan 1, Anthea Springbett 1, Sarah Reid 1, Richard Lathe 1, Alan Colman 1, C Bruce A Whitelaw 1
PMCID: PMC1462007  PMID: 11901126

Abstract

BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression.

Full Text

The Full Text of this article is available as a PDF (263.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASCHAFFENBURG R., DREWRY J. Improved method for the preparation of crystalline beta-lactoglobulin and alpha-lactalbumin from cow's milk. Biochem J. 1957 Feb;65(2):273–277. doi: 10.1042/bj0650273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aagaard L., Laible G., Selenko P., Schmid M., Dorn R., Schotta G., Kuhfittig S., Wolf A., Lebersorger A., Singh P. B. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 1999 Apr 1;18(7):1923–1938. doi: 10.1093/emboj/18.7.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen N. D., Norris M. L., Surani M. A. Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell. 1990 Jun 1;61(5):853–861. doi: 10.1016/0092-8674(90)90195-k. [DOI] [PubMed] [Google Scholar]
  4. Amsterdam A., Lin S., Hopkins N. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev Biol. 1995 Sep;171(1):123–129. doi: 10.1006/dbio.1995.1265. [DOI] [PubMed] [Google Scholar]
  5. Assaad F. F., Tucker K. L., Signer E. R. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol. 1993 Sep;22(6):1067–1085. doi: 10.1007/BF00028978. [DOI] [PubMed] [Google Scholar]
  6. Dobie K. W., Lee M., Fantes J. A., Graham E., Clark A. J., Springbett A., Lathe R., McClenaghan M. Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6659–6664. doi: 10.1073/pnas.93.13.6659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dobie K., Mehtali M., McClenaghan M., Lathe R. Variegated gene expression in mice. Trends Genet. 1997 Apr;13(4):127–130. doi: 10.1016/s0168-9525(97)01097-4. [DOI] [PubMed] [Google Scholar]
  8. Festenstein R., Sharghi-Namini S., Fox M., Roderick K., Tolaini M., Norton T., Saveliev A., Kioussis D., Singh P. Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context-dependent manner. Nat Genet. 1999 Dec;23(4):457–461. doi: 10.1038/70579. [DOI] [PubMed] [Google Scholar]
  9. Giraldo P., Giménez E., Montoliu L. The use of yeast artificial chromosomes in transgenic animals: expression studies of the tyrosinase gene in transgenic mice. Genet Anal. 1999 Nov;15(3-5):175–178. doi: 10.1016/s1050-3862(99)00023-6. [DOI] [PubMed] [Google Scholar]
  10. Guo H. S., Cervera M. T., García J. A. Plum pox potyvirus resistance associated to transgene silencing that can be stabilized after different number of plant generations. Gene. 1998 Jan 12;206(2):263–272. doi: 10.1016/s0378-1119(97)00595-7. [DOI] [PubMed] [Google Scholar]
  11. Henikoff S. Position-effect variegation after 60 years. Trends Genet. 1990 Dec;6(12):422–426. doi: 10.1016/0168-9525(90)90304-o. [DOI] [PubMed] [Google Scholar]
  12. Hsieh J., Fire A. Recognition and silencing of repeated DNA. Annu Rev Genet. 2000;34:187–204. doi: 10.1146/annurev.genet.34.1.187. [DOI] [PubMed] [Google Scholar]
  13. Jensen S., Gassama M. P., Heidmann T. Cosuppression of I transposon activity in Drosophila by I-containing sense and antisense transgenes. Genetics. 1999 Dec;153(4):1767–1774. doi: 10.1093/genetics/153.4.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Martin D. I., Whitelaw E. The vagaries of variegating transgenes. Bioessays. 1996 Nov;18(11):919–923. doi: 10.1002/bies.950181111. [DOI] [PubMed] [Google Scholar]
  15. Matzke M. A., Neuhuber F., Matzke A. J. A variety of epistatic interactions can occur between partially homologous transgene loci brought together by sexual crossing. Mol Gen Genet. 1993 Jan;236(2-3):379–386. doi: 10.1007/BF00277137. [DOI] [PubMed] [Google Scholar]
  16. Mayeux-Portas V., File S. E., Stewart C. L., Morris R. J. Mice lacking the cell adhesion molecule Thy-1 fail to use socially transmitted cues to direct their choice of food. Curr Biol. 2000 Jan 27;10(2):68–75. doi: 10.1016/s0960-9822(99)00278-x. [DOI] [PubMed] [Google Scholar]
  17. McClenaghan M., Springbett A., Wallace R. M., Wilde C. J., Clark A. J. Secretory proteins compete for production in the mammary gland of transgenic mice. Biochem J. 1995 Sep 1;310(Pt 2):637–641. doi: 10.1042/bj3100637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McMorrow T., van den Wijngaard A., Wollenschlaeger A., van de Corput M., Monkhorst K., Trimborn T., Fraser P., van Lohuizen M., Jenuwein T., Djabali M. Activation of the beta globin locus by transcription factors and chromatin modifiers. EMBO J. 2000 Sep 15;19(18):4986–4996. doi: 10.1093/emboj/19.18.4986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Paro R., Hogness D. S. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):263–267. doi: 10.1073/pnas.88.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robertson G., Garrick D., Wilson M., Martin D. I., Whitelaw E. Age-dependent silencing of globin transgenes in the mouse. Nucleic Acids Res. 1996 Apr 15;24(8):1465–1471. doi: 10.1093/nar/24.8.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schweizer J., Valenza-Schaerly P., Goret F., Pourcel C. Control of expression and methylation of a hepatitis B virus transgene by strain-specific modifiers. DNA Cell Biol. 1998 May;17(5):427–435. doi: 10.1089/dna.1998.17.427. [DOI] [PubMed] [Google Scholar]
  22. Simons J. P., McClenaghan M., Clark A. J. Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature. 1987 Aug 6;328(6130):530–532. doi: 10.1038/328530a0. [DOI] [PubMed] [Google Scholar]
  23. Stankunas K., Berger J., Ruse C., Sinclair D. A., Randazzo F., Brock H. W. The enhancer of polycomb gene of Drosophila encodes a chromatin protein conserved in yeast and mammals. Development. 1998 Oct;125(20):4055–4066. doi: 10.1242/dev.125.20.4055. [DOI] [PubMed] [Google Scholar]
  24. Sutherland H. G., Kearns M., Morgan H. D., Headley A. P., Morris C., Martin D. I., Whitelaw E. Reactivation of heritably silenced gene expression in mice. Mamm Genome. 2000 May;11(5):347–355. doi: 10.1007/s003350010066. [DOI] [PubMed] [Google Scholar]
  25. Whitelaw C. B., Harris S., McClenaghan M., Simons J. P., Clark A. J. Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice. Biochem J. 1992 Aug 15;286(Pt 1):31–39. doi: 10.1042/bj2860031. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES