Skip to main content
Genetics logoLink to Genetics
. 2002 Mar;160(3):1051–1065. doi: 10.1093/genetics/160.3.1051

Genetic and molecular analysis of region 88E9;88F2 in Drosophila melanogaster, including the ear gene related to human factors involved in lineage-specific leukemias.

Claudia B Zraly 1, Yun Feng 1, Andrew K Dingwall 1
PMCID: PMC1462017  PMID: 11901121

Abstract

We identified and characterized the Drosophila gene ear (ENL/AF9-related), which is closely related to mammalian genes that have been implicated in the onset of acute lymphoblastic and myelogenous leukemias when their products are fused as chimeras with those of human HRX, a homolog of Drosophila trithorax. The ear gene product is present in all early embryonic cells, but becomes restricted to specific tissues in late embryogenesis. We mapped the ear gene to cytological region 88E11-13, near easter, and showed that it is deleted by Df(3R)ea(5022rx1), a small, cytologically invisible deletion. Annotation of the completed Drosophila genome sequence suggests that this region might contain as many as 26 genes, most of which, including ear, are not represented by mutant alleles. We carried out a large-scale noncomplementation screen using Df(3R)ea(5022rx1) and chemical (EMS) mutagenesis from which we identified seven novel multi-allele recessive lethal complementation groups in this region. An overlapping deficiency, Df(3R)Po(4), allowed us to map several of these groups to either the proximal or the distal regions of Df(3R)ea(5022rx1). One of these complementation groups likely corresponds to the ear gene as judged by map location, terminal phenotype, and reduction of EAR protein levels.

Full Text

The Full Text of this article is available as a PDF (395.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Adler H. T., Chinery R., Wu D. Y., Kussick S. J., Payne J. M., Fornace A. J., Jr, Tkachuk D. C. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol. 1999 Oct;19(10):7050–7060. doi: 10.1128/mcb.19.10.7050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson K. V., Nüsslein-Volhard C. Information for the dorsal--ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature. 1984 Sep 20;311(5983):223–227. doi: 10.1038/311223a0. [DOI] [PubMed] [Google Scholar]
  4. Anderson K. V. Pinning down positional information: dorsal-ventral polarity in the Drosophila embryo. Cell. 1998 Nov 13;95(4):439–442. doi: 10.1016/s0092-8674(00)81610-4. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Breen T. R., Chinwalla V., Harte P. J. Trithorax is required to maintain engrailed expression in a subset of engrailed-expressing cells. Mech Dev. 1995 Jul;52(1):89–98. doi: 10.1016/0925-4773(95)00393-f. [DOI] [PubMed] [Google Scholar]
  7. Brizuela B. J., Elfring L., Ballard J., Tamkun J. W., Kennison J. A. Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. Genetics. 1994 Jul;137(3):803–813. doi: 10.1093/genetics/137.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brock H. W., van Lohuizen M. The Polycomb group--no longer an exclusive club? Curr Opin Genet Dev. 2001 Apr;11(2):175–181. doi: 10.1016/s0959-437x(00)00176-3. [DOI] [PubMed] [Google Scholar]
  9. Cairns B. R., Henry N. L., Kornberg R. D. TFG/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol Cell Biol. 1996 Jul;16(7):3308–3316. doi: 10.1128/mcb.16.7.3308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cimino G., Rapanotti M. C., Sprovieri T., Elia L. ALL1 gene alterations in acute leukemia: biological and clinical aspects. Haematologica. 1998 Apr;83(4):350–357. [PubMed] [Google Scholar]
  11. Dingwall A. K., Beek S. J., McCallum C. M., Tamkun J. W., Kalpana G. V., Goff S. P., Scott M. P. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol Biol Cell. 1995 Jul;6(7):777–791. doi: 10.1091/mbc.6.7.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dobson C. L., Warren A. J., Pannell R., Forster A., Lavenir I., Corral J., Smith A. J., Rabbitts T. H. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J. 1999 Jul 1;18(13):3564–3574. doi: 10.1093/emboj/18.13.3564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dobson C. L., Warren A. J., Pannell R., Forster A., Rabbitts T. H. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J. 2000 Mar 1;19(5):843–851. doi: 10.1093/emboj/19.5.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dynlacht B. D., Hoey T., Tjian R. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell. 1991 Aug 9;66(3):563–576. doi: 10.1016/0092-8674(81)90019-2. [DOI] [PubMed] [Google Scholar]
  15. Elfring L. K., Daniel C., Papoulas O., Deuring R., Sarte M., Moseley S., Beek S. J., Waldrip W. R., Daubresse G., DePace A. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics. 1998 Jan;148(1):251–265. doi: 10.1093/genetics/148.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Erdélyi M., Szabad J. Isolation and characterization of dominant female sterile mutations of Drosophila melanogaster. I. Mutations on the third chromosome. Genetics. 1989 May;122(1):111–127. doi: 10.1093/genetics/122.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ford A. M., Ridge S. A., Cabrera M. E., Mahmoud H., Steel C. M., Chan L. C., Greaves M. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature. 1993 May 27;363(6427):358–360. doi: 10.1038/363358a0. [DOI] [PubMed] [Google Scholar]
  18. García-Cuéllar M. P., Schreiner S. A., Birke M., Hamacher M., Fey G. H., Slany R. K. ENL, the MLL fusion partner in t(11;19), binds to the c-Abl interactor protein 1 (ABI1) that is fused to MLL in t(10;11)+. Oncogene. 2000 Mar 30;19(14):1744–1751. doi: 10.1038/sj.onc.1203506. [DOI] [PubMed] [Google Scholar]
  19. García-Cuéllar M. P., Zilles O., Schreiner S. A., Birke M., Winkler T. H., Slany R. K. The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene. 2001 Jan 25;20(4):411–419. doi: 10.1038/sj.onc.1204108. [DOI] [PubMed] [Google Scholar]
  20. Hanson R. D., Hess J. L., Yu B. D., Ernst P., van Lohuizen M., Berns A., van der Lugt N. M., Shashikant C. S., Ruddle F. H., Seto M. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14372–14377. doi: 10.1073/pnas.96.25.14372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henry N. L., Campbell A. M., Feaver W. J., Poon D., Weil P. A., Kornberg R. D. TFIIF-TAF-RNA polymerase II connection. Genes Dev. 1994 Dec 1;8(23):2868–2878. doi: 10.1101/gad.8.23.2868. [DOI] [PubMed] [Google Scholar]
  22. Hess J. L., Yu B. D., Li B., Hanson R., Korsmeyer S. J. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood. 1997 Sep 1;90(5):1799–1806. [PubMed] [Google Scholar]
  23. John S., Howe L., Tafrov S. T., Grant P. A., Sternglanz R., Workman J. L. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev. 2000 May 15;14(10):1196–1208. [PMC free article] [PubMed] [Google Scholar]
  24. Kassis J. A., VanSickle E. P., Sensabaugh S. M. A fragment of engrailed regulatory DNA can mediate transvection of the white gene in Drosophila. Genetics. 1991 Aug;128(4):751–761. doi: 10.1093/genetics/128.4.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kokubo T., Gong D. W., Wootton J. C., Horikoshi M., Roeder R. G., Nakatani Y. Molecular cloning of Drosophila TFIID subunits. Nature. 1994 Feb 3;367(6462):484–487. doi: 10.1038/367484a0. [DOI] [PubMed] [Google Scholar]
  26. Lavau C., Szilvassy S. J., Slany R., Cleary M. L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 1997 Jul 16;16(14):4226–4237. doi: 10.1093/emboj/16.14.4226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Löchner K., Siegler G., Führer M., Greil J., Beck J. D., Fey G. H., Marschalek R. A specific deletion in the breakpoint cluster region of the ALL-1 gene is associated with acute lymphoblastic T-cell leukemias. Cancer Res. 1996 May 1;56(9):2171–2177. [PubMed] [Google Scholar]
  28. Mazo A. M., Huang D. H., Mozer B. A., Dawid I. B. The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2112–2116. doi: 10.1073/pnas.87.6.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nakamura T., Alder H., Gu Y., Prasad R., Canaani O., Kamada N., Gale R. P., Lange B., Crist W. M., Nowell P. C. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4631–4635. doi: 10.1073/pnas.90.10.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nelson C. R., Szauter P. Cytogenetic analysis of chromosome region 89A of Drosophila melanogaster: isolation of deficiencies and mapping of Po, Aldox-1 and transposon insertions. Mol Gen Genet. 1992 Oct;235(1):11–21. doi: 10.1007/BF00286176. [DOI] [PubMed] [Google Scholar]
  31. Rowley J. D. Chromosome translocations: good genes gone wrong. Pathol Biol (Paris) 1995 Mar;43(3):197–201. [PubMed] [Google Scholar]
  32. Rowley J. D. Rearrangements involving chromosome band 11Q23 in acute leukaemia. Semin Cancer Biol. 1993 Dec;4(6):377–385. [PubMed] [Google Scholar]
  33. Rubnitz J. E., Behm F. G., Downing J. R. 11q23 rearrangements in acute leukemia. Leukemia. 1996 Jan;10(1):74–82. [PubMed] [Google Scholar]
  34. Rubnitz J. E., Morrissey J., Savage P. A., Cleary M. L. ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood. 1994 Sep 15;84(6):1747–1752. [PubMed] [Google Scholar]
  35. Saha V., Young B. D., Freemont P. S. Translocations, fusion genes, and acute leukemia. J Cell Biochem Suppl. 1998;30-31:264–276. [PubMed] [Google Scholar]
  36. Schichman S. A., Caligiuri M. A., Gu Y., Strout M. P., Canaani E., Bloomfield C. D., Croce C. M. ALL-1 partial duplication in acute leukemia. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6236–6239. doi: 10.1073/pnas.91.13.6236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schreiner S. A., García-Cuéllar M. P., Fey G. H., Slany R. K. The leukemogenic fusion of MLL with ENL creates a novel transcriptional transactivator. Leukemia. 1999 Oct;13(10):1525–1533. doi: 10.1038/sj.leu.2401534. [DOI] [PubMed] [Google Scholar]
  38. Slany R. K., Lavau C., Cleary M. L. The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol. 1998 Jan;18(1):122–129. doi: 10.1128/mcb.18.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spradling A. C., Stern D. M., Kiss I., Roote J., Laverty T., Rubin G. M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sévenet N., Lellouch-Tubiana A., Schofield D., Hoang-Xuan K., Gessler M., Birnbaum D., Jeanpierre C., Jouvet A., Delattre O. Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum Mol Genet. 1999 Dec;8(13):2359–2368. doi: 10.1093/hmg/8.13.2359. [DOI] [PubMed] [Google Scholar]
  42. Tamkun J. W., Kahn R. A., Kissinger M., Brizuela B. J., Rulka C., Scott M. P., Kennison J. A. The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3120–3124. doi: 10.1073/pnas.88.8.3120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tetzlaff M. T., Jäckle H., Pankratz M. J. Lack of Drosophila cytoskeletal tropomyosin affects head morphogenesis and the accumulation of oskar mRNA required for germ cell formation. EMBO J. 1996 Mar 15;15(6):1247–1254. [PMC free article] [PubMed] [Google Scholar]
  44. Tkachuk D. C., Kohler S., Cleary M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell. 1992 Nov 13;71(4):691–700. doi: 10.1016/0092-8674(92)90602-9. [DOI] [PubMed] [Google Scholar]
  45. Wang W., Côté J., Xue Y., Zhou S., Khavari P. A., Biggar S. R., Muchardt C., Kalpana G. V., Goff S. P., Yaniv M. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 1996 Oct 1;15(19):5370–5382. [PMC free article] [PubMed] [Google Scholar]
  46. Welch M. D., Drubin D. G. A nuclear protein with sequence similarity to proteins implicated in human acute leukemias is important for cellular morphogenesis and actin cytoskeletal function in Saccharomyces cerevisiae. Mol Biol Cell. 1994 Jun;5(6):617–632. doi: 10.1091/mbc.5.6.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yu B. D., Hanson R. D., Hess J. L., Horning S. E., Korsmeyer S. J. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10632–10636. doi: 10.1073/pnas.95.18.10632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yu B. D., Hess J. L., Horning S. E., Brown G. A., Korsmeyer S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature. 1995 Nov 30;378(6556):505–508. doi: 10.1038/378505a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES