Skip to main content
Genetics logoLink to Genetics
. 2002 Mar;160(3):1023–1034. doi: 10.1093/genetics/160.3.1023

The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes.

I V Makunin 1, E I Volkova 1, E S Belyaeva 1, E N Nabirochkina 1, V Pirrotta 1, I F Zhimulev 1
PMCID: PMC1462019  PMID: 11901119

Abstract

In many late-replicating euchromatic regions of salivary gland polytene chromosomes, DNA is underrepresented. A mutation in the SuUR gene suppresses underreplication and leads to normal levels of DNA polytenization in these regions. We identified the SuUR gene and determined its structure. In the SuUR mutant stock a 6-kb insertion was found in the fourth exon of the gene. A single SuUR transcript is present at all stages of Drosophila development and is most abundant in adult females and embryos. The SuUR gene encodes a protein of 962 amino acids whose putative sequence is similar to the N-terminal part of SNF2/SWI2 proteins. Staining of salivary gland polytene chromosomes with antibodies directed against the SuUR protein shows that the protein is localized mainly in late-replicating regions and in regions of intercalary and pericentric heterochromatin.

Full Text

The Full Text of this article is available as a PDF (304.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Akam M. E., Roberts D. B., Richards G. P., Ashburner M. Drosophila: the genetics of two major larval proteins. Cell. 1978 Feb;13(2):215–225. doi: 10.1016/0092-8674(78)90190-3. [DOI] [PubMed] [Google Scholar]
  3. Allshire R., Bickmore W. Pausing for thought on the boundaries of imprinting. Cell. 2000 Sep 15;102(6):705–708. doi: 10.1016/s0092-8674(00)00058-1. [DOI] [PubMed] [Google Scholar]
  4. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arkhipova I. R. Promoter elements in Drosophila melanogaster revealed by sequence analysis. Genetics. 1995 Mar;139(3):1359–1369. doi: 10.1093/genetics/139.3.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Belyaeva E. S., Zhimulev I. F., Volkova E. I., Alekseyenko A. A., Moshkin Y. M., Koryakov D. E. Su(UR)ES: a gene suppressing DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster polytene chromosomes. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7532–7537. doi: 10.1073/pnas.95.13.7532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bosco G., Du W., Orr-Weaver T. L. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat Cell Biol. 2001 Mar;3(3):289–295. doi: 10.1038/35060086. [DOI] [PubMed] [Google Scholar]
  8. Brendel V., Bucher P., Nourbakhsh I. R., Blaisdell B. E., Karlin S. Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2002–2006. doi: 10.1073/pnas.89.6.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dej K. J., Spradling A. C. The endocycle controls nurse cell polytene chromosome structure during Drosophila oogenesis. Development. 1999 Jan;126(2):293–303. doi: 10.1242/dev.126.2.293. [DOI] [PubMed] [Google Scholar]
  10. Devlin R. H., Holm D. G., Morin K. R., Honda B. M. Identifying a single-copy DNA sequence associated with the expression of a heterochromatic gene, the light locus of Drosophila melanogaster. Genome. 1990 Jun;33(3):405–415. doi: 10.1139/g90-062. [DOI] [PubMed] [Google Scholar]
  11. Duronio R. J. Establishing links between developmental signaling pathways and cell-cycle regulation in Drosophila. Curr Opin Genet Dev. 1999 Feb;9(1):81–88. doi: 10.1016/s0959-437x(99)80012-4. [DOI] [PubMed] [Google Scholar]
  12. Gray T. A., Nicholls R. D. Diverse splicing mechanisms fuse the evolutionarily conserved bicistronic MOCS1A and MOCS1B open reading frames. RNA. 2000 Jul;6(7):928–936. doi: 10.1017/s1355838200000182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guruprasad K., Reddy B. V., Pandit M. W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990 Dec;4(2):155–161. doi: 10.1093/protein/4.2.155. [DOI] [PubMed] [Google Scholar]
  14. Jin Y., Wang Y., Walker D. L., Dong H., Conley C., Johansen J., Johansen K. M. JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell. 1999 Jul;4(1):129–135. doi: 10.1016/s1097-2765(00)80195-1. [DOI] [PubMed] [Google Scholar]
  15. Kaufmann B. P. Distribution of Induced Breaks along the X-Chromosome of Drosophila Melanogaster. Proc Natl Acad Sci U S A. 1939 Nov;25(11):571–577. doi: 10.1073/pnas.25.11.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kutach A. K., Kadonaga J. T. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol. 2000 Jul;20(13):4754–4764. doi: 10.1128/mcb.20.13.4754-4764.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lagrange T., Kapanidis A. N., Tang H., Reinberg D., Ebright R. H. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev. 1998 Jan 1;12(1):34–44. doi: 10.1101/gad.12.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lamb M. M., Laird C. D. Three euchromatic DNA sequences under-replicated in polytene chromosomes of Drosophila are localized in constrictions and ectopic fibers. Chromosoma. 1987;95(4):227–235. doi: 10.1007/BF00294779. [DOI] [PubMed] [Google Scholar]
  19. Lilly M. A., Spradling A. C. The Drosophila endocycle is controlled by Cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev. 1996 Oct 1;10(19):2514–2526. doi: 10.1101/gad.10.19.2514. [DOI] [PubMed] [Google Scholar]
  20. Maes M., Messens E. Phenol as grinding material in RNA preparations. Nucleic Acids Res. 1992 Aug 25;20(16):4374–4374. doi: 10.1093/nar/20.16.4374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pazin M. J., Kadonaga J. T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell. 1997 Mar 21;88(6):737–740. doi: 10.1016/s0092-8674(00)81918-2. [DOI] [PubMed] [Google Scholar]
  22. Preston C. R., Sved J. A., Engels W. R. Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics. 1996 Dec;144(4):1623–1638. doi: 10.1093/genetics/144.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Richmond E., Peterson C. L. Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res. 1996 Oct 1;24(19):3685–3692. doi: 10.1093/nar/24.19.3685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rubin G. M., Hong L., Brokstein P., Evans-Holm M., Frise E., Stapleton M., Harvey D. A. A Drosophila complementary DNA resource. Science. 2000 Mar 24;287(5461):2222–2224. doi: 10.1126/science.287.5461.2222. [DOI] [PubMed] [Google Scholar]
  25. Schott D. R., Baldwin M. C., Finnerty V. Molybdenum hydroxylases in Drosophila. III. Further characterization of the low xanthine dehydrogenase gene. Biochem Genet. 1986 Aug;24(7-8):509–527. doi: 10.1007/BF00504332. [DOI] [PubMed] [Google Scholar]
  26. Smith A. V., Orr-Weaver T. L. The regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny. Development. 1991 Aug;112(4):997–1008. doi: 10.1242/dev.112.4.997. [DOI] [PubMed] [Google Scholar]
  27. Soldatov A., Nabirochkina E., Georgieva S., Belenkaja T., Georgiev P. TAFII40 protein is encoded by the e(y)1 gene: biological consequences of mutations. Mol Cell Biol. 1999 May;19(5):3769–3778. doi: 10.1128/mcb.19.5.3769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Staveley B. E., Hilliker A. J., Phillips J. P. Genetic organization of the cSOD microregion of Drosophila melanogaster. Genome. 1991 Apr;34(2):279–282. doi: 10.1139/g91-044. [DOI] [PubMed] [Google Scholar]
  29. Stokes D. G., Perry R. P. DNA-binding and chromatin localization properties of CHD1. Mol Cell Biol. 1995 May;15(5):2745–2753. doi: 10.1128/mcb.15.5.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang Y., Zhang W., Jin Y., Johansen J., Johansen K. M. The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell. 2001 May 18;105(4):433–443. doi: 10.1016/s0092-8674(01)00325-7. [DOI] [PubMed] [Google Scholar]
  31. Zhang P., Spradling A. C. The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics. 1995 Feb;139(2):659–670. doi: 10.1093/genetics/139.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zhimulev I. F., Makunin I. V., Volkova E. I., Pirrotta V., Beliaeva E. S. Effekt chetyrekh doz gena Su(UR)ES na interkaliarnyi geterokhromatin u Drosophila melanogaster. Genetika. 2000 Aug;36(8):1061–1070. [PubMed] [Google Scholar]
  33. Zhimulev I. F. Morphology and structure of polytene chromosomes. Adv Genet. 1996;34:1–497. doi: 10.1016/s0065-2660(08)60533-7. [DOI] [PubMed] [Google Scholar]
  34. Zhimulev I. F. Polytene chromosomes, heterochromatin, and position effect variegation. Adv Genet. 1998;37:1–566. doi: 10.1016/s0065-2660(08)60341-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES