Skip to main content
Genetics logoLink to Genetics
. 2002 Mar;160(3):823–832. doi: 10.1093/genetics/160.3.823

Predicting evolutionary potential: in vitro evolution accurately reproduces natural evolution of the tem beta-lactamase.

Miriam Barlow 1, Barry G Hall 1
PMCID: PMC1462021  PMID: 11901104

Abstract

To evaluate the validity of our in vitro evolution method as a model for natural evolutionary processes, the TEM-1 beta-lactamase gene was evolved in vitro and was selected for increased resistance to cefotaxime, cefuroxime, ceftazadime, and aztreonam, i.e., the "extended-spectrum" phenotype. The amino acid substitutions recovered in 10 independent in vitro evolvants were compared with the amino acid substitutions in the naturally occurring extended-spectrum TEM alleles. Of the nine substitutions that have arisen multiple times in naturally occurring extended-spectrum TEM alleles, seven were recovered multiple times in vitro. We take this result as evidence that our in vitro evolution technique accurately mimics natural evolution and can therefore be used to predict the results of natural evolutionary processes. Additionally, our results predict that a phenotype not yet observed among TEM beta-lactamases in nature-resistance to cefepime-is likely to arise in nature.

Full Text

The Full Text of this article is available as a PDF (114.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler R. P., Coulson A. F., Frère J. M., Ghuysen J. M., Joris B., Forsman M., Levesque R. C., Tiraby G., Waley S. G. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991 May 15;276(Pt 1):269–270. doi: 10.1042/bj2760269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnold F. H., Moore J. C. Optimizing industrial enzymes by directed evolution. Adv Biochem Eng Biotechnol. 1997;58:1–14. doi: 10.1007/BFb0103300. [DOI] [PubMed] [Google Scholar]
  3. Blazquez J., Baquero M. R., Canton R., Alos I., Baquero F. Characterization of a new TEM-type beta-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob Agents Chemother. 1993 Oct;37(10):2059–2063. doi: 10.1128/aac.37.10.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blazquez J., Morosini M. I., Negri M. C., Baquero F. Selection of naturally occurring extended-spectrum TEM beta-lactamase variants by fluctuating beta-lactam pressure. Antimicrob Agents Chemother. 2000 Aug;44(8):2182–2184. doi: 10.1128/aac.44.8.2182-2184.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  6. Chanal C., Bonnet R., De Champs C., Sirot D., Labia R., Sirot J. Prevalence of beta-lactamases among 1,072 clinical strains of Proteus mirabilis: a 2-year survey in a French hospital. Antimicrob Agents Chemother. 2000 Jul;44(7):1930–1935. doi: 10.1128/aac.44.7.1930-1935.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chanal C., Poupart M. C., Sirot D., Labia R., Sirot J., Cluzel R. Nucleotide sequences of CAZ-2, CAZ-6, and CAZ-7 beta-lactamase genes. Antimicrob Agents Chemother. 1992 Sep;36(9):1817–1820. doi: 10.1128/aac.36.9.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coco W. M., Levinson W. E., Crist M. J., Hektor H. J., Darzins A., Pienkos P. T., Squires C. H., Monticello D. J. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol. 2001 Apr;19(4):354–359. doi: 10.1038/86744. [DOI] [PubMed] [Google Scholar]
  10. Courvalin P., Trieu-Cuot P. Minimizing potential resistance: the molecular view. Clin Infect Dis. 2001 Sep 15;33 (Suppl 3):S138–S146. doi: 10.1086/321840. [DOI] [PubMed] [Google Scholar]
  11. Crameri A., Whitehorn E. A., Tate E., Stemmer W. P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol. 1996 Mar;14(3):315–319. doi: 10.1038/nbt0396-315. [DOI] [PubMed] [Google Scholar]
  12. Kitzis M. D., Billot-Klein D., Goldstein F. W., Williamson R., Tran Van Nhieu G., Carlet J., Acar J. F., Gutmann L. Dissemination of the novel plasmid-mediated beta-lactamase CTX-1, which confers resistance to broad-spectrum cephalosporins, and its inhibition by beta-lactamase inhibitors. Antimicrob Agents Chemother. 1988 Jan;32(1):9–14. doi: 10.1128/aac.32.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lassner M., Bedbrook J. Directed molecular evolution in plant improvement. Curr Opin Plant Biol. 2001 Apr;4(2):152–156. doi: 10.1016/s1369-5266(00)00152-7. [DOI] [PubMed] [Google Scholar]
  14. Livermore D. M. Are all beta-lactams created equal? Scand J Infect Dis Suppl. 1996;101:33–43. [PubMed] [Google Scholar]
  15. Long-McGie J., Liu A. D., Schellenberger V. Rapid in vivo evolution of a beta-lactamase using phagemids. Biotechnol Bioeng. 2000 Apr 5;68(1):121–125. doi: 10.1002/(sici)1097-0290(20000405)68:1<121::aid-bit15>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  16. Matagne A., Lamotte-Brasseur J., Frère J. M. Catalytic properties of class A beta-lactamases: efficiency and diversity. Biochem J. 1998 Mar 1;330(Pt 2):581–598. doi: 10.1042/bj3300581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mau B., Newton M. A., Larget B. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics. 1999 Mar;55(1):1–12. doi: 10.1111/j.0006-341x.1999.00001.x. [DOI] [PubMed] [Google Scholar]
  18. Minshull J., Stemmer W. P. Protein evolution by molecular breeding. Curr Opin Chem Biol. 1999 Jun;3(3):284–290. doi: 10.1016/s1367-5931(99)80044-1. [DOI] [PubMed] [Google Scholar]
  19. Moore J. C., Arnold F. H. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol. 1996 Apr;14(4):458–467. doi: 10.1038/nbt0496-458. [DOI] [PubMed] [Google Scholar]
  20. Orencia M. C., Yoon J. S., Ness J. E., Stemmer W. P., Stevens R. C. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nat Struct Biol. 2001 Mar;8(3):238–242. doi: 10.1038/84981. [DOI] [PubMed] [Google Scholar]
  21. Perilli M., Segatore B., de Massis M. R., Riccio M. L., Bianchi C., Zollo A., Rossolini G. M., Amicosante G. TEM-72, a new extended-spectrum beta-lactamase detected in Proteus mirabilis and Morganella morganii in Italy. Antimicrob Agents Chemother. 2000 Sep;44(9):2537–2539. doi: 10.1128/aac.44.9.2537-2539.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rannala B., Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol. 1996 Sep;43(3):304–311. doi: 10.1007/BF02338839. [DOI] [PubMed] [Google Scholar]
  23. Rebuck J. A., Olsen K. M., Fey P. D., Bergman K. L., Rupp M. E. In vitro activities of parenteral beta-lactam antimicrobials against TEM-10-, TEM-26- and SHV-5-derived extended-spectrum beta-lactamases expressed in an isogenic Escherichia coli host. J Antimicrob Chemother. 2000 Sep;46(3):461–464. doi: 10.1093/jac/46.3.461. [DOI] [PubMed] [Google Scholar]
  24. Schmidt-Dannert C., Arnold F. H. Directed evolution of industrial enzymes. Trends Biotechnol. 1999 Apr;17(4):135–136. doi: 10.1016/s0167-7799(98)01283-9. [DOI] [PubMed] [Google Scholar]
  25. Shafikhani S., Siegel R. A., Ferrari E., Schellenberger V. Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization. Biotechniques. 1997 Aug;23(2):304–310. doi: 10.2144/97232rr01. [DOI] [PubMed] [Google Scholar]
  26. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vakulenko S. B., Geryk B., Kotra L. P., Mobashery S., Lerner S. A. Selection and characterization of beta-lactam-beta-lactamase inactivator-resistant mutants following PCR mutagenesis of the TEM-1 beta-lactamase gene. Antimicrob Agents Chemother. 1998 Jul;42(7):1542–1548. doi: 10.1128/aac.42.7.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yan J. J., Wu S. M., Tsai S. H., Wu J. J., Su I. J. Prevalence of SHV-12 among clinical isolates of Klebsiella pneumoniae producing extended-spectrum beta-lactamases and identification of a novel AmpC enzyme (CMY-8) in Southern Taiwan. Antimicrob Agents Chemother. 2000 Jun;44(6):1438–1442. doi: 10.1128/aac.44.6.1438-1442.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zaccolo M., Gherardi E. The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase. J Mol Biol. 1999 Jan 15;285(2):775–783. doi: 10.1006/jmbi.1998.2262. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES