Abstract
Antisense DNAs complementary against various sequences of the alpha-sarcin domain (C2646-G2674) of 23S rRNA from Escherichia coli were hybridized to naked 23S rRNA as well as to 70S ribosomes. Saturation levels of up to 0.4 per 70S ribosome were found, the identical fraction was susceptible to the attack of the RNase alpha-sarcin. The hybridization was specific as demonstrated with RNase H digestion, sequencing the resulting fragments and blockage of the action of alpha-sarcin. The RNase alpha-sarcin seems to approach its cleavage site from the 3' half of the loop of the alpha-sarcin domain. Hybridization is efficiently achieved at 37 degrees C and can extend at least into the 3' strand of the stem of the alpha-sarcin domain. However, the inhibition of alpha-sarcin activity is observed at 30 degrees C but not at 37 degrees C. For a significant inhibition of poly(Phe) synthesis the temperature had to be lowered to 25 degrees C. The results imply that the alpha-sarcin domain changes its conformation during protein synthesis and that the conformational changes may include a melting of the stem of the alpha-sarcin domain.
Full Text
The Full Text of this article is available as a PDF (134.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartetzko A., Nierhaus K. H. Mg2+/NH4+/polyamine system for polyuridine-dependent polyphenylalanine synthesis with near in vivo characteristics. Methods Enzymol. 1988;164:650–658. doi: 10.1016/s0076-6879(88)64075-4. [DOI] [PubMed] [Google Scholar]
- Donis-Keller H. Site specific enzymatic cleavage of RNA. Nucleic Acids Res. 1979 Sep 11;7(1):179–192. doi: 10.1093/nar/7.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo Y., Wool I. G. The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J Biol Chem. 1982 Aug 10;257(15):9054–9060. [PubMed] [Google Scholar]
- Geigenmüller U., Nierhaus K. H. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J. 1990 Dec;9(13):4527–4533. doi: 10.1002/j.1460-2075.1990.tb07904.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glück A., Endo Y., Wool I. G. The ribosomal RNA identity elements for ricin and for alpha-sarcin: mutations in the putative CG pair that closes a GAGA tetraloop. Nucleic Acids Res. 1994 Feb 11;22(3):321–324. doi: 10.1093/nar/22.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gnirke A., Geigenmüller U., Rheinberger H. J., Nierhaus L. H. The allosteric three-site model for the ribosomal elongation cycle. Analysis with a heteropolymeric mRNA. J Biol Chem. 1989 May 5;264(13):7291–7301. [PubMed] [Google Scholar]
- Grzywacz-Bohun E., Twardowski T. Blocking of the function of alpha-sarcin domain of 28S ribosomal RNA using the synthetic oligonucleotides as antisense DNA probes. Acta Biochim Pol. 1992;39(1):65–73. [PubMed] [Google Scholar]
- Hartz D., McPheeters D. S., Traut R., Gold L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 1988;164:419–425. doi: 10.1016/s0076-6879(88)64058-4. [DOI] [PubMed] [Google Scholar]
- Hausner T. P., Atmadja J., Nierhaus K. H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie. 1987 Sep;69(9):911–923. doi: 10.1016/0300-9084(87)90225-2. [DOI] [PubMed] [Google Scholar]
- Mankin A. S., Skripkin E. A., Chichkova N. V., Kopylov A. M., Bogdanov A. A. An enzymatic approach for localization of oligodeoxyribonucleotide binding sites on RNA. Application to studying rRNA topography. FEBS Lett. 1981 Aug 31;131(2):253–256. doi: 10.1016/0014-5793(81)80378-x. [DOI] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
- Miller S. P., Bodley J. W. Alpha-sarcin cleavage of ribosomal RNA is inhibited by the binding of elongation factor G or thiostrepton to the ribosome. Nucleic Acids Res. 1991 Apr 11;19(7):1657–1660. doi: 10.1093/nar/19.7.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller S. P., Bodley J. W. Alpha-sarcin cleaves ribosomal RNA at the alpha-sarcin site in the absence of ribosomal proteins. Biochem Biophys Res Commun. 1988 Jul 15;154(1):404–410. doi: 10.1016/0006-291x(88)90700-0. [DOI] [PubMed] [Google Scholar]
- Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
- Muralikrishna P., Cooperman B. S. A photolabile oligodeoxyribonucleotide probe of the peptidyltransferase center: identification of neighboring ribosomal components. Biochemistry. 1991 Jun 4;30(22):5421–5428. doi: 10.1021/bi00236a014. [DOI] [PubMed] [Google Scholar]
- Nierhaus K. H., Schilling-Bartetzko S., Twardowski T. The two main states of the elongating ribosome and the role of the alpha-sarcin stem-loop structure of 23S RNA. Biochimie. 1992 Apr;74(4):403–410. doi: 10.1016/0300-9084(92)90118-x. [DOI] [PubMed] [Google Scholar]
- Oakes M. I., Clark M. W., Henderson E., Lake J. A. DNA hybridization electron microscopy: ribosomal RNA nucleotides 1392-1407 are exposed in the cleft of the small subunit. Proc Natl Acad Sci U S A. 1986 Jan;83(2):275–279. doi: 10.1073/pnas.83.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rheinberger H. J., Geigenmüller U., Wedde M., Nierhaus K. H. Parameters for the preparation of Escherichia coli ribosomes and ribosomal subunits active in tRNA binding. Methods Enzymol. 1988;164:658–670. doi: 10.1016/s0076-6879(88)64076-6. [DOI] [PubMed] [Google Scholar]
- Saxena S. K., Ackerman E. J. Microinjected oligonucleotides complementary to the alpha-sarcin loop of 28 S RNA abolish protein synthesis in Xenopus oocytes. J Biol Chem. 1990 Feb 25;265(6):3263–3269. [PubMed] [Google Scholar]
- Skripkin E. A., Kopylov A. M., Bogdanov A. A., Vinogradov S. V., Berlin Y. A. rRNA topography in ribosome. IV. The accessibility of the 5'-end region of 16S rRNA. Mol Biol Rep. 1979 Dec 31;5(4):221–224. doi: 10.1007/BF00782892. [DOI] [PubMed] [Google Scholar]
- Szewczak A. A., Moore P. B., Chang Y. L., Wool I. G. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9581–9585. doi: 10.1073/pnas.90.20.9581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szewczak A. A., Moore P. B. The sarcin/ricin loop, a modular RNA. J Mol Biol. 1995 Mar 17;247(1):81–98. doi: 10.1006/jmbi.1994.0124. [DOI] [PubMed] [Google Scholar]
- Teare J., Wollenzien P. Specificity of site directed psoralen addition to RNA. Nucleic Acids Res. 1989 May 11;17(9):3359–3372. doi: 10.1093/nar/17.9.3359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White G. A., Wood T., Hill W. E. Probing the alpha-sarcin region of Escherichia coli 23S rRNA with a cDNA oligomer. Nucleic Acids Res. 1988 Nov 25;16(22):10817–10831. doi: 10.1093/nar/16.22.10817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wurmbach P., Nierhaus K. H. Isolation of the protein synthesis elongation factors EF-Tu, EF-Ts, and EF-G from Escherichia coli. Methods Enzymol. 1979;60:593–606. doi: 10.1016/s0076-6879(79)60056-3. [DOI] [PubMed] [Google Scholar]
