Skip to main content
Genetics logoLink to Genetics
. 2002 Mar;160(3):1087–1094. doi: 10.1093/genetics/160.3.1087

Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive.

Stephen L Dobson 1, Eric J Marsland 1, Wanchai Rattanadechakul 1
PMCID: PMC1462033  PMID: 11901124

Abstract

Maternally inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods, often behaving as reproductive parasites by manipulating host reproduction to enhance the vertical transmission of infections. One manipulation is cytoplasmic incompatibility (CI), which causes a significant reduction in brood hatch and promotes the spread of the maternally inherited Wolbachia infection into the host population (i.e., cytoplasmic drive). Here, we have examined a Wolbachia superinfection in the mosquito Aedes albopictus and found the infection to be associated with both cytoplasmic incompatibility and increased host fecundity. Relative to uninfected females, infected females live longer, produce more eggs, and have higher hatching rates in compatible crosses. A model describing Wolbachia infection dynamics predicts that increased fecundity will accelerate cytoplasmic drive rates. To test this hypothesis, we used population cages to examine the rate at which Wolbachia invades an uninfected Ae. albopictus population. The observed cytoplasmic drive rates were consistent with model predictions for a CI-inducing Wolbachia infection that increases host fecundity. We discuss the relevance of these results to both the evolution of Wolbachia symbioses and proposed applied strategies for the use of Wolbachia infections to drive desired transgenes through natural populations (i.e., population replacement strategies).

Full Text

The Full Text of this article is available as a PDF (120.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awahmukalah D. S., Brooks M. A. Viability of Culex pipiens pipiens eggs affected by nutrition and aposymbiosis. J Invertebr Pathol. 1985 Mar;45(2):225–230. doi: 10.1016/0022-2011(85)90012-6. [DOI] [PubMed] [Google Scholar]
  2. Bordenstein S. R., Werren J. H. Do Wolbachia influence fecundity in Nasonia vitripennis? Heredity (Edinb) 2000 Jan;84(Pt 1):54–62. doi: 10.1046/j.1365-2540.2000.00637.x. [DOI] [PubMed] [Google Scholar]
  3. Bourtzis K., Dobson S. L., Braig H. R., O'Neill S. L. Rescuing Wolbachia have been overlooked. Nature. 1998 Feb 26;391(6670):852–853. doi: 10.1038/36017. [DOI] [PubMed] [Google Scholar]
  4. Braig H. R., Guzman H., Tesh R. B., O'Neill S. L. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature. 1994 Feb 3;367(6462):453–455. doi: 10.1038/367453a0. [DOI] [PubMed] [Google Scholar]
  5. Curtis C. Making mosquitoes harmless. Parasitol Today. 1992 Sep;8(9):305–305. doi: 10.1016/0169-4758(92)90101-7. [DOI] [PubMed] [Google Scholar]
  6. Dobson S. L., Marsland E. J., Rattanadechakul W. Wolbachia-induced cytoplasmic incompatibility in single- and superinfected Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2001 May;38(3):382–387. doi: 10.1603/0022-2585-38.3.382. [DOI] [PubMed] [Google Scholar]
  7. Dobson S. L., Rattanadechakul W. A novel technique for removing Wolbachia infections from Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2001 Nov;38(6):844–849. doi: 10.1603/0022-2585-38.6.844. [DOI] [PubMed] [Google Scholar]
  8. Ewald P. W. Transmission modes and evolution of the parasitism-mutualism continuum. Ann N Y Acad Sci. 1987;503:295–306. doi: 10.1111/j.1749-6632.1987.tb40616.x. [DOI] [PubMed] [Google Scholar]
  9. Fine P. E. On the dynamics of symbiote-dependent cytoplasmic incompatibility in culicine mosquitoes. J Invertebr Pathol. 1978 Jan;31(1):10–18. doi: 10.1016/0022-2011(78)90102-7. [DOI] [PubMed] [Google Scholar]
  10. Fine P. E. Vectors and vertical transmission: an epidemiologic perspective. Ann N Y Acad Sci. 1975;266:173–194. doi: 10.1111/j.1749-6632.1975.tb35099.x. [DOI] [PubMed] [Google Scholar]
  11. Giordano R., O'Neill S. L., Robertson H. M. Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana. Genetics. 1995 Aug;140(4):1307–1317. doi: 10.1093/genetics/140.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffmann A. A., Clancy D. J., Merton E. Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics. 1994 Mar;136(3):993–999. doi: 10.1093/genetics/136.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffmann A. A., Turelli M., Harshman L. G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics. 1990 Dec;126(4):933–948. doi: 10.1093/genetics/126.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffmann A. A., Turelli M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics. 1988 Jun;119(2):435–444. doi: 10.1093/genetics/119.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nigro L., Prout T. Is there selection on RFLP differences in mitochondrial DNA? Genetics. 1990 Jul;125(3):551–555. doi: 10.1093/genetics/125.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Neill S. L. Wolbachia pipientis: symbiont or parasite? Parasitol Today. 1995 May;11(5):168–169. doi: 10.1016/0169-4758(95)80146-4. [DOI] [PubMed] [Google Scholar]
  18. Presgraves D. C. A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila. Genetics. 2000 Feb;154(2):771–776. doi: 10.1093/genetics/154.2.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reed K. M., Werren J. H. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol Reprod Dev. 1995 Apr;40(4):408–418. doi: 10.1002/mrd.1080400404. [DOI] [PubMed] [Google Scholar]
  20. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc Biol Sci. 1995 Sep 22;261(1362):325–330. doi: 10.1098/rspb.1995.0154. [DOI] [PubMed] [Google Scholar]
  21. Smith D. C. From extracellular to intracellular: the establishment of a symbiosis. Proc R Soc Lond B Biol Sci. 1979 Apr 11;204(1155):115–130. doi: 10.1098/rspb.1979.0017. [DOI] [PubMed] [Google Scholar]
  22. Stevens L., Wade M. J. Cytoplasmically inherited reproductive incompatibility in Tribolium flour beetles: the rate of spread and effect on population size. Genetics. 1990 Feb;124(2):367–372. doi: 10.1093/genetics/124.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taylor M. J., Hoerauf A. Wolbachia bacteria of filarial nematodes. Parasitol Today. 1999 Nov;15(11):437–442. doi: 10.1016/s0169-4758(99)01533-1. [DOI] [PubMed] [Google Scholar]
  24. Turelli M., Hoffmann A. A., McKechnie S. W. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics. 1992 Nov;132(3):713–723. doi: 10.1093/genetics/132.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vavre F., Girin C., Boulétreau M. Phylogenetic status of a fecundity-enhancing Wolbachia that does not induce thelytoky in Trichogramma. Insect Mol Biol. 1999 Feb;8(1):67–72. doi: 10.1046/j.1365-2583.1999.810067.x. [DOI] [PubMed] [Google Scholar]
  26. Wade M. J., Chang N. W. Increased male fertility in Tribolium confusum beetles after infection with the intracellular parasite Wolbachia. Nature. 1995 Jan 5;373(6509):72–74. doi: 10.1038/373072a0. [DOI] [PubMed] [Google Scholar]
  27. Werren J. H. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. [DOI] [PubMed] [Google Scholar]
  28. Zhou W., Rousset F., O'Neil S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998 Mar 22;265(1395):509–515. doi: 10.1098/rspb.1998.0324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES