Skip to main content
Genetics logoLink to Genetics
. 2002 Apr;160(4):1561–1571. doi: 10.1093/genetics/160.4.1561

A complex array of DNA-binding proteins required for pairing-sensitive silencing by a polycomb group response element from the Drosophila engrailed gene.

Jeffrey Americo 1, Mary Whiteley 1, J Lesley Brown 1, Miki Fujioka 1, James B Jaynes 1, Judith A Kassis 1
PMCID: PMC1462036  PMID: 11973310

Abstract

Regulatory DNA from the Drosophila gene engrailed causes silencing of a linked reporter gene (mini-white) in transgenic Drosophila. This silencing is strengthened in flies homozygous for the transgene and has been called "pairing-sensitive silencing." The pairing-sensitive silencing activities of a large fragment (2.6 kb) and a small subfragment (181 bp) were explored. Since pairing-sensitive silencing is often associated with Polycomb group response elements (PREs), we tested the activities of each of these engrailed fragments in a construct designed to detect PRE activity in embryos. Both fragments were found to behave as PREs in a bxd-Ubx-lacZ reporter construct, while the larger fragment showed additional silencing capabilities. Using the mini-white reporter gene, a 139-bp minimal pairing-sensitive element (PSE) was defined. DNA mobility-shift assays using Drosophila nuclear extracts suggested that there are eight protein-binding sites within this 139-bp element. Mutational analysis showed that at least five of these sites are important for pairing-sensitive silencing. One of the required sites is for the Polycomb group protein Pleiohomeotic and another is GAGAG, a sequence bound by the proteins GAGA factor and Pipsqueak. The identity of the other proteins is unknown. These data suggest a surprising degree of complexity in the DNA-binding proteins required for PSE function.

Full Text

The Full Text of this article is available as a PDF (374.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beverley S. M., Wilson A. C. Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol. 1984;21(1):1–13. doi: 10.1007/BF02100622. [DOI] [PubMed] [Google Scholar]
  2. Brown J. L., Mucci D., Whiteley M., Dirksen M. L., Kassis J. A. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell. 1998 Jun;1(7):1057–1064. doi: 10.1016/s1097-2765(00)80106-9. [DOI] [PubMed] [Google Scholar]
  3. Busturia A., Lloyd A., Bejarano F., Zavortink M., Xin H., Sakonju S. The MCP silencer of the Drosophila Abd-B gene requires both Pleiohomeotic and GAGA factor for the maintenance of repression. Development. 2001 Jun;128(11):2163–2173. doi: 10.1242/dev.128.11.2163. [DOI] [PubMed] [Google Scholar]
  4. Chan C. S., Rastelli L., Pirrotta V. A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 1994 Jun 1;13(11):2553–2564. doi: 10.1002/j.1460-2075.1994.tb06545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang Y. L., Peng Y. H., Pan I. C., Sun D. S., King B., Huang D. H. Essential role of Drosophila Hdac1 in homeotic gene silencing. Proc Natl Acad Sci U S A. 2001 Aug 7;98(17):9730–9735. doi: 10.1073/pnas.171325498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Csink A. K., Henikoff S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature. 1996 Jun 6;381(6582):529–531. doi: 10.1038/381529a0. [DOI] [PubMed] [Google Scholar]
  7. Dernburg A. F., Broman K. W., Fung J. C., Marshall W. F., Philips J., Agard D. A., Sedat J. W. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell. 1996 May 31;85(5):745–759. doi: 10.1016/s0092-8674(00)81240-4. [DOI] [PubMed] [Google Scholar]
  8. Fauvarque M. O., Dura J. M. polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev. 1993 Aug;7(8):1508–1520. doi: 10.1101/gad.7.8.1508. [DOI] [PubMed] [Google Scholar]
  9. Francis N. J., Kingston R. E. Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol. 2001 Jun;2(6):409–421. doi: 10.1038/35073039. [DOI] [PubMed] [Google Scholar]
  10. Fujioka M., Emi-Sarker Y., Yusibova G. L., Goto T., Jaynes J. B. Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. Development. 1999 Jun;126(11):2527–2538. doi: 10.1242/dev.126.11.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujioka M., Jaynes J. B., Bejsovec A., Weir M. Production of transgenic Drosophila. Methods Mol Biol. 2000;136:353–363. doi: 10.1385/1-59259-065-9:353. [DOI] [PubMed] [Google Scholar]
  12. Hagstrom K., Muller M., Schedl P. A Polycomb and GAGA dependent silencer adjoins the Fab-7 boundary in the Drosophila bithorax complex. Genetics. 1997 Aug;146(4):1365–1380. doi: 10.1093/genetics/146.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hagstrom K., Schedl P. Remembrance of things past: maintaining gene expression patterns with altered chromatin. Curr Opin Genet Dev. 1997 Dec;7(6):814–821. doi: 10.1016/s0959-437x(97)80045-7. [DOI] [PubMed] [Google Scholar]
  14. Henikoff S., Comai L. Trans-sensing effects: the ups and downs of being together. Cell. 1998 May 1;93(3):329–332. doi: 10.1016/s0092-8674(00)81161-7. [DOI] [PubMed] [Google Scholar]
  15. Hodgson J. W., Argiropoulos B., Brock H. W. Site-specific recognition of a 70-base-pair element containing d(GA)(n) repeats mediates bithoraxoid polycomb group response element-dependent silencing. Mol Cell Biol. 2001 Jul;21(14):4528–4543. doi: 10.1128/MCB.21.14.4528-4543.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horard B., Tatout C., Poux S., Pirrotta V. Structure of a polycomb response element and in vitro binding of polycomb group complexes containing GAGA factor. Mol Cell Biol. 2000 May;20(9):3187–3197. doi: 10.1128/mcb.20.9.3187-3197.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hyde-DeRuyscher R. P., Jennings E., Shenk T. DNA binding sites for the transcriptional activator/repressor YY1. Nucleic Acids Res. 1995 Nov 11;23(21):4457–4465. doi: 10.1093/nar/23.21.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kapoun A. M., Kaufman T. C. Regulatory regions of the homeotic gene proboscipedia are sensitive to chromosomal pairing. Genetics. 1995 Jun;140(2):643–658. doi: 10.1093/genetics/140.2.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kassis J. A., Desplan C., Wright D. K., O'Farrell P. H. Evolutionary conservation of homeodomain-binding sites and other sequences upstream and within the major transcription unit of the Drosophila segmentation gene engrailed. Mol Cell Biol. 1989 Oct;9(10):4304–4311. doi: 10.1128/mcb.9.10.4304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kassis J. A. Unusual properties of regulatory DNA from the Drosophila engrailed gene: three "pairing-sensitive" sites within a 1.6-kb region. Genetics. 1994 Mar;136(3):1025–1038. doi: 10.1093/genetics/136.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kassis J. A., VanSickle E. P., Sensabaugh S. M. A fragment of engrailed regulatory DNA can mediate transvection of the white gene in Drosophila. Genetics. 1991 Aug;128(4):751–761. doi: 10.1093/genetics/128.4.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kennison J. A. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet. 1995;29:289–303. doi: 10.1146/annurev.ge.29.120195.001445. [DOI] [PubMed] [Google Scholar]
  23. Lehmann M., Siegmund T., Lintermann K. G., Korge G. The pipsqueak protein of Drosophila melanogaster binds to GAGA sequences through a novel DNA-binding domain. J Biol Chem. 1998 Oct 23;273(43):28504–28509. doi: 10.1074/jbc.273.43.28504. [DOI] [PubMed] [Google Scholar]
  24. Mahmoudi T., Verrijzer C. P. Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene. 2001 May 28;20(24):3055–3066. doi: 10.1038/sj.onc.1204330. [DOI] [PubMed] [Google Scholar]
  25. Mishra R. K., Mihaly J., Barges S., Spierer A., Karch F., Hagstrom K., Schweinsberg S. E., Schedl P. The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol Cell Biol. 2001 Feb;21(4):1311–1318. doi: 10.1128/MCB.21.4.1311-1318.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morris J. R., Geyer P. K., Wu C. T. Core promoter elements can regulate transcription on a separate chromosome in trans. Genes Dev. 1999 Feb 1;13(3):253–258. doi: 10.1101/gad.13.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Muller M., Hagstrom K., Gyurkovics H., Pirrotta V., Schedl P. The mcp element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics. 1999 Nov;153(3):1333–1356. doi: 10.1093/genetics/153.3.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ng J., Hart C. M., Morgan K., Simon J. A. A Drosophila ESC-E(Z) protein complex is distinct from other polycomb group complexes and contains covalently modified ESC. Mol Cell Biol. 2000 May;20(9):3069–3078. doi: 10.1128/mcb.20.9.3069-3078.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pirrotta V. PcG complexes and chromatin silencing. Curr Opin Genet Dev. 1997 Apr;7(2):249–258. doi: 10.1016/s0959-437x(97)80135-9. [DOI] [PubMed] [Google Scholar]
  30. Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
  31. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Satijn D. P., Otte A. P. Polycomb group protein complexes: do different complexes regulate distinct target genes? Biochim Biophys Acta. 1999 Oct 6;1447(1):1–16. doi: 10.1016/s0167-4781(99)00130-x. [DOI] [PubMed] [Google Scholar]
  33. Saurin A. J., Shao Z., Erdjument-Bromage H., Tempst P., Kingston R. E. A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature. 2001 Aug 9;412(6847):655–660. doi: 10.1038/35088096. [DOI] [PubMed] [Google Scholar]
  34. Shao Z., Raible F., Mollaaghababa R., Guyon J. R., Wu C. T., Bender W., Kingston R. E. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell. 1999 Jul 9;98(1):37–46. doi: 10.1016/S0092-8674(00)80604-2. [DOI] [PubMed] [Google Scholar]
  35. Shimell M. J., Peterson A. J., Burr J., Simon J. A., O'Connor M. B. Functional analysis of repressor binding sites in the iab-2 regulatory region of the abdominal-A homeotic gene. Dev Biol. 2000 Feb 1;218(1):38–52. doi: 10.1006/dbio.1999.9576. [DOI] [PubMed] [Google Scholar]
  36. Soeller W. C., Oh C. E., Kornberg T. B. Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol Cell Biol. 1993 Dec;13(12):7961–7970. doi: 10.1128/mcb.13.12.7961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Strutt H., Paro R. The polycomb group protein complex of Drosophila melanogaster has different compositions at different target genes. Mol Cell Biol. 1997 Dec;17(12):6773–6783. doi: 10.1128/mcb.17.12.6773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tie F., Furuyama T., Prasad-Sinha J., Jane E., Harte P. J. The Drosophila Polycomb Group proteins ESC and E(Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development. 2001 Jan;128(2):275–286. doi: 10.1242/dev.128.2.275. [DOI] [PubMed] [Google Scholar]
  39. Whiteley M., Noguchi P. D., Sensabaugh S. M., Odenwald W. F., Kassis J. A. The Drosophila gene escargot encodes a zinc finger motif found in snail-related genes. Mech Dev. 1992 Feb;36(3):117–127. doi: 10.1016/0925-4773(92)90063-p. [DOI] [PubMed] [Google Scholar]
  40. Wu C. T., Morris J. R. Transvection and other homology effects. Curr Opin Genet Dev. 1999 Apr;9(2):237–246. doi: 10.1016/S0959-437X(99)80035-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES