Skip to main content
Genetics logoLink to Genetics
. 2002 Apr;160(4):1283–1293. doi: 10.1093/genetics/160.4.1283

Estimation of effective population size of HIV-1 within a host: a pseudomaximum-likelihood approach.

Tae-Kun Seo 1, Jeffrey L Thorne 1, Masami Hasegawa 1, Hirohisa Kishino 1
PMCID: PMC1462041  PMID: 11973287

Abstract

Using pseudomaximum-likelihood approaches to phylogenetic inference and coalescent theory, we develop a computationally tractable method of estimating effective population size from serially sampled viral data. We show that the variance of the maximum-likelihood estimator of effective population size depends on the serial sampling design only because internal node times on a coalescent genealogy can be better estimated with some designs than with others. Given the internal node times and the number of sequences sampled, the variance of the maximum-likelihood estimator is independent of the serial sampling design. We then estimate the effective size of the HIV-1 population within nine hosts. If we assume that the mutation rate is 2.5 x 10(-5) substitutions/generation and is the same in all patients, estimated generation lengths vary from 0.73 to 2.43 days/generation and the mean (1.47) is similar to the generation lengths estimated by other researchers. If we assume that generation length is 1.47 days and is the same in all patients, mutation rate estimates vary from 1.52 x 10(-5) to 5.02 x 10(-5). Our results indicate that effective viral population size and evolutionary rate per year are negatively correlated among HIV-1 patients.

Full Text

The Full Text of this article is available as a PDF (125.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Drummond A., Rodrigo A. G. Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial-sample UPGMA. Mol Biol Evol. 2000 Dec;17(12):1807–1815. doi: 10.1093/oxfordjournals.molbev.a026281. [DOI] [PubMed] [Google Scholar]
  2. Felsenstein J. Estimating effective population size from samples of sequences: inefficiency of pairwise and segregating sites as compared to phylogenetic estimates. Genet Res. 1992 Apr;59(2):139–147. doi: 10.1017/s0016672300030354. [DOI] [PubMed] [Google Scholar]
  3. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  4. Fu Y. X. A phylogenetic estimator of effective population size or mutation rate. Genetics. 1994 Feb;136(2):685–692. doi: 10.1093/genetics/136.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fu Y. X. Estimating mutation rate and generation time from longitudinal samples of DNA sequences. Mol Biol Evol. 2001 Apr;18(4):620–626. doi: 10.1093/oxfordjournals.molbev.a003842. [DOI] [PubMed] [Google Scholar]
  6. Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
  7. Mansky L. M. Forward mutation rate of human immunodeficiency virus type 1 in a T lymphoid cell line. AIDS Res Hum Retroviruses. 1996 Mar 1;12(4):307–314. doi: 10.1089/aid.1996.12.307. [DOI] [PubMed] [Google Scholar]
  8. Neuhauser C., Krone S. M. The genealogy of samples in models with selection. Genetics. 1997 Feb;145(2):519–534. doi: 10.1093/genetics/145.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nielsen R., Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics. 1998 Mar;148(3):929–936. doi: 10.1093/genetics/148.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nowak M. A., May R. M., Anderson R. M. The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. AIDS. 1990 Nov;4(11):1095–1103. doi: 10.1097/00002030-199011000-00007. [DOI] [PubMed] [Google Scholar]
  11. Nowak M. A., May R. M. Coexistence and competition in HIV infections. J Theor Biol. 1992 Dec 7;159(3):329–342. doi: 10.1016/s0022-5193(05)80728-3. [DOI] [PubMed] [Google Scholar]
  12. Overbaugh J., Bangham C. R. Selection forces and constraints on retroviral sequence variation. Science. 2001 May 11;292(5519):1106–1109. doi: 10.1126/science.1059128. [DOI] [PubMed] [Google Scholar]
  13. Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M., Ho D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996 Mar 15;271(5255):1582–1586. doi: 10.1126/science.271.5255.1582. [DOI] [PubMed] [Google Scholar]
  14. Przeworski M., Charlesworth B., Wall J. D. Genealogies and weak purifying selection. Mol Biol Evol. 1999 Feb;16(2):246–252. doi: 10.1093/oxfordjournals.molbev.a026106. [DOI] [PubMed] [Google Scholar]
  15. Rambaut A. Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics. 2000 Apr;16(4):395–399. doi: 10.1093/bioinformatics/16.4.395. [DOI] [PubMed] [Google Scholar]
  16. Rodrigo A. G., Shpaer E. G., Delwart E. L., Iversen A. K., Gallo M. V., Brojatsch J., Hirsch M. S., Walker B. D., Mullins J. I. Coalescent estimates of HIV-1 generation time in vivo. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2187–2191. doi: 10.1073/pnas.96.5.2187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  18. Seo Tae-Kun, Thorne Jeffrey L., Hasegawa Masami, Kishino Hirohisa. A viral sampling design for testing the molecular clock and for estimating evolutionary rates and divergence times. Bioinformatics. 2002 Jan;18(1):115–123. doi: 10.1093/bioinformatics/18.1.115. [DOI] [PubMed] [Google Scholar]
  19. Shankarappa R., Margolick J. B., Gange S. J., Rodrigo A. G., Upchurch D., Farzadegan H., Gupta P., Rinaldo C. R., Learn G. H., He X. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol. 1999 Dec;73(12):10489–10502. doi: 10.1128/jvi.73.12.10489-10502.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tachida H. A study on a nearly neutral mutation model in finite populations. Genetics. 1991 May;128(1):183–192. doi: 10.1093/genetics/128.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES