Skip to main content
Genetics logoLink to Genetics
. 2002 Apr;160(4):1609–1618. doi: 10.1093/genetics/160.4.1609

Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks.

Richard Mott 1, Jonathan Flint 1
PMCID: PMC1462050  PMID: 11973314

Abstract

We describe a method to simultaneously detect and fine map quantitative trait loci (QTL) that is especially suited to the mapping of modifier loci in mouse mutant models. The method exploits the high level of historical recombination present in a heterogeneous stock (HS), an outbred population of mice derived from known founder strains. The experimental design is an F(2) cross between the HS and a genetically distinct line, such as one carrying a knockout or transgene. QTL detection is performed by a standard genome scan with approximately 100 markers and fine mapping by typing the same animals using densely spaced markers over those candidate regions detected by the scan. The analysis uses an extension of the dynamic-programming technique employed previously to fine map QTL in HS mice. We show by simulation that a QTL accounting for 5% of the total variance can be detected and fine mapped with >50% probability to within 3 cM by genotyping approximately 1500 animals.

Full Text

The Full Text of this article is available as a PDF (125.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abney M., McPeek M. S., Ober C. Estimation of variance components of quantitative traits in inbred populations. Am J Hum Genet. 2000 Feb;66(2):629–650. doi: 10.1086/302759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aitman T. J., Glazier A. M., Wallace C. A., Cooper L. D., Norsworthy P. J., Wahid F. N., Al-Majali K. M., Trembling P. M., Mann C. J., Shoulders C. C. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999 Jan;21(1):76–83. doi: 10.1038/5013. [DOI] [PubMed] [Google Scholar]
  3. Alpert K. B., Tanksley S. D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15503–15507. doi: 10.1073/pnas.93.26.15503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Darvasi A. Interval-specific congenic strains (ISCS): an experimental design for mapping a QTL into a 1-centimorgan interval. Mamm Genome. 1997 Mar;8(3):163–167. doi: 10.1007/s003359900382. [DOI] [PubMed] [Google Scholar]
  5. Darvasi A., Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics. 1995 Nov;141(3):1199–1207. doi: 10.1093/genetics/141.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flint J., Mott R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet. 2001 Jun;2(6):437–445. doi: 10.1038/35076585. [DOI] [PubMed] [Google Scholar]
  7. Long A. D., Mullaney S. L., Mackay T. F., Langley C. H. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1497–1510. doi: 10.1093/genetics/144.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McPeek M. S. From mouse to human: fine mapping of quantitative trait loci in a model organism. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12389–12390. doi: 10.1073/pnas.240463597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mott R., Talbot C. J., Turri M. G., Collins A. C., Flint J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12649–12654. doi: 10.1073/pnas.230304397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ramírez-Solis R., Liu P., Bradley A. Chromosome engineering in mice. Nature. 1995 Dec 14;378(6558):720–724. doi: 10.1038/378720a0. [DOI] [PubMed] [Google Scholar]
  11. Talbot C. J., Nicod A., Cherny S. S., Fulker D. W., Collins A. C., Flint J. High-resolution mapping of quantitative trait loci in outbred mice. Nat Genet. 1999 Mar;21(3):305–308. doi: 10.1038/6825. [DOI] [PubMed] [Google Scholar]
  12. Threadgill D. W., Dlugosz A. A., Hansen L. A., Tennenbaum T., Lichti U., Yee D., LaMantia C., Mourton T., Herrup K., Harris R. C. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995 Jul 14;269(5221):230–234. doi: 10.1126/science.7618084. [DOI] [PubMed] [Google Scholar]
  13. Wells C., Brown S. D. Genomics meets genetics: towards a mutant map of the mouse. Mamm Genome. 2000 Jul;11(7):472–477. doi: 10.1007/s003350010092. [DOI] [PubMed] [Google Scholar]
  14. Xu S., Yi N. Mixed model analysis of quantitative trait loci. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14542–14547. doi: 10.1073/pnas.250235197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES