Skip to main content
Genetics logoLink to Genetics
. 2002 Apr;160(4):1409–1422. doi: 10.1093/genetics/160.4.1409

Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway.

Meng-Er Huang 1, Anne-Gaëlle Rio 1, Marie-Dominique Galibert 1, Francis Galibert 1
PMCID: PMC1462066  PMID: 11973297

Abstract

The Pol32 subunit of S. cerevisiae DNA polymerase (Pol) delta plays an important role in replication and mutagenesis. Here, by measuring the CAN1 forward mutation rate, we found that either POL32 or REV3 (which encodes the Pol zeta catalytic subunit) inactivation produces overlapping antimutator effects against rad mutators belonging to three epistasis groups. In contrast, the msh2Delta pol32Delta double mutant exhibits a synergistic mutator phenotype. Can(r) mutation spectrum analysis of pol32Delta strains revealed a substantial increase in the frequency of deletions and duplications (primarily deletions) of sequences flanked by short direct repeats, which appears to be RAD52 and RAD10 independent. To better understand the pol32Delta and rev3Delta antimutator effects in rad backgrounds and the pol32Delta mutator effect in a msh2Delta background, we determined Can(r) mutation spectra for rad5Delta, rad5Delta pol32Delta, rad5Delta rev3Delta, msh2Delta, msh2Delta pol32Delta, and msh2Delta rev3Delta strains. Both rad5Delta pol32Delta and rad5Delta rev3Delta mutants exhibit a reduction in frameshifts and base substitutions, attributable to antimutator effects conferred by the pol32Delta and rev3Delta mutations. In contrast, an increase in these two types of alterations is attributable to a synergistic mutator effect between the pol32Delta and msh2Delta mutations. Taken together, these observations indicate that Pol32 is important in ensuring genome stability and in mutagenesis.

Full Text

The Full Text of this article is available as a PDF (126.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amin N. S., Nguyen M. N., Oh S., Kolodner R. D. exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol Cell Biol. 2001 Aug;21(15):5142–5155. doi: 10.1128/MCB.21.15.5142-5155.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baynton K., Fuchs R. P. Lesions in DNA: hurdles for polymerases. Trends Biochem Sci. 2000 Feb;25(2):74–79. doi: 10.1016/s0968-0004(99)01524-8. [DOI] [PubMed] [Google Scholar]
  3. Broomfield S., Chow B. L., Xiao W. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5678–5683. doi: 10.1073/pnas.95.10.5678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broomfield S., Hryciw T., Xiao W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res. 2001 Aug 9;486(3):167–184. doi: 10.1016/s0921-8777(01)00091-x. [DOI] [PubMed] [Google Scholar]
  5. Burgers P. M. Eukaryotic DNA polymerases in DNA replication and DNA repair. Chromosoma. 1998 Sep;107(4):218–227. doi: 10.1007/s004120050300. [DOI] [PubMed] [Google Scholar]
  6. Burgers P. M., Gerik K. J. Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem. 1998 Jul 31;273(31):19756–19762. doi: 10.1074/jbc.273.31.19756. [DOI] [PubMed] [Google Scholar]
  7. Canning S., Dryja T. P. Short, direct repeats at the breakpoints of deletions of the retinoblastoma gene. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5044–5048. doi: 10.1073/pnas.86.13.5044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen C., Kolodner R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet. 1999 Sep;23(1):81–85. doi: 10.1038/12687. [DOI] [PubMed] [Google Scholar]
  9. Chen C., Merrill B. J., Lau P. J., Holm C., Kolodner R. D. Saccharomyces cerevisiae pol30 (proliferating cell nuclear antigen) mutations impair replication fidelity and mismatch repair. Mol Cell Biol. 1999 Nov;19(11):7801–7815. doi: 10.1128/mcb.19.11.7801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen C., Umezu K., Kolodner R. D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell. 1998 Jul;2(1):9–22. doi: 10.1016/s1097-2765(00)80109-4. [DOI] [PubMed] [Google Scholar]
  11. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gerik K. J., Li X., Pautz A., Burgers P. M. Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem. 1998 Jul 31;273(31):19747–19755. doi: 10.1074/jbc.273.31.19747. [DOI] [PubMed] [Google Scholar]
  13. Giot L., Chanet R., Simon M., Facca C., Faye G. Involvement of the yeast DNA polymerase delta in DNA repair in vivo. Genetics. 1997 Aug;146(4):1239–1251. doi: 10.1093/genetics/146.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greene C. N., Jinks-Robertson S. Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. Mol Cell Biol. 1997 May;17(5):2844–2850. doi: 10.1128/mcb.17.5.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greene C. N., Jinks-Robertson S. Spontaneous frameshift mutations in Saccharomyces cerevisiae: accumulation during DNA replication and removal by proofreading and mismatch repair activities. Genetics. 2001 Sep;159(1):65–75. doi: 10.1093/genetics/159.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haracska L., Prakash S., Prakash L. Replication past O(6)-methylguanine by yeast and human DNA polymerase eta. Mol Cell Biol. 2000 Nov;20(21):8001–8007. doi: 10.1128/mcb.20.21.8001-8007.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haracska L., Unk I., Johnson R. E., Johansson E., Burgers P. M., Prakash S., Prakash L. Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev. 2001 Apr 15;15(8):945–954. doi: 10.1101/gad.882301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harfe B. D., Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu Rev Genet. 2000;34:359–399. doi: 10.1146/annurev.genet.34.1.359. [DOI] [PubMed] [Google Scholar]
  19. Harfe B. D., Jinks-Robertson S. DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae. Mol Cell. 2000 Dec;6(6):1491–1499. doi: 10.1016/s1097-2765(00)00145-3. [DOI] [PubMed] [Google Scholar]
  20. Huang M. E., Cadieu E., Souciet J. L., Galibert F. Disruption of six novel yeast genes reveals three genes essential for vegetative growth and one required for growth at low temperature. Yeast. 1997 Sep 30;13(12):1181–1194. doi: 10.1002/(SICI)1097-0061(19970930)13:12<1181::AID-YEA169>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  21. Huang M. E., Le Douarin B., Henry C., Galibert F. The Saccharomyces cerevisiae protein YJR043C (Pol32) interacts with the catalytic subunit of DNA polymerase alpha and is required for cell cycle progression in G2/M. Mol Gen Genet. 1999 Jan;260(6):541–550. doi: 10.1007/s004380050927. [DOI] [PubMed] [Google Scholar]
  22. Huang M. E., de Calignon A., Nicolas A., Galibert F. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr Genet. 2000 Nov;38(4):178–187. doi: 10.1007/s002940000149. [DOI] [PubMed] [Google Scholar]
  23. Ivanov E. L., Haber J. E. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):2245–2251. doi: 10.1128/mcb.15.4.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jiricny J., Nyström-Lahti M. Mismatch repair defects in cancer. Curr Opin Genet Dev. 2000 Apr;10(2):157–161. doi: 10.1016/s0959-437x(00)00066-6. [DOI] [PubMed] [Google Scholar]
  25. Johnson R. E., Haracska L., Prakash S., Prakash L. Role of DNA polymerase eta in the bypass of a (6-4) TT photoproduct. Mol Cell Biol. 2001 May;21(10):3558–3563. doi: 10.1128/MCB.21.10.3558-3563.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Johnson R. E., Kovvali G. K., Prakash L., Prakash S. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J Biol Chem. 1996 Mar 29;271(13):7285–7288. doi: 10.1074/jbc.271.13.7285. [DOI] [PubMed] [Google Scholar]
  27. Johnson R. E., Washington M. T., Haracska L., Prakash S., Prakash L. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature. 2000 Aug 31;406(6799):1015–1019. doi: 10.1038/35023030. [DOI] [PubMed] [Google Scholar]
  28. Kokoska R. J., Stefanovic L., DeMai J., Petes T. D. Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta. Mol Cell Biol. 2000 Oct;20(20):7490–7504. doi: 10.1128/mcb.20.20.7490-7504.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kokoska R. J., Stefanovic L., Tran H. T., Resnick M. A., Gordenin D. A., Petes T. D. Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t). Mol Cell Biol. 1998 May;18(5):2779–2788. doi: 10.1128/mcb.18.5.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kunkel T. A., Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000;69:497–529. doi: 10.1146/annurev.biochem.69.1.497. [DOI] [PubMed] [Google Scholar]
  31. Kunz B. A., Ramachandran K., Vonarx E. J. DNA sequence analysis of spontaneous mutagenesis in Saccharomyces cerevisiae. Genetics. 1998 Apr;148(4):1491–1505. doi: 10.1093/genetics/148.4.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kunz B. A., Straffon A. F., Vonarx E. J. DNA damage-induced mutation: tolerance via translesion synthesis. Mutat Res. 2000 Jun 30;451(1-2):169–185. doi: 10.1016/s0027-5107(00)00048-8. [DOI] [PubMed] [Google Scholar]
  33. Luzi P., Rafi M. A., Wenger D. A. Characterization of the large deletion in the GALC gene found in patients with Krabbe disease. Hum Mol Genet. 1995 Dec;4(12):2335–2338. doi: 10.1093/hmg/4.12.2335. [DOI] [PubMed] [Google Scholar]
  34. Magnani C., Cremonesi L., Giunta A., Magnaghi P., Taramelli R., Ferrari M. Short direct repeats at the breakpoints of a novel large deletion in the CFTR gene suggest a likely slipped mispairing mechanism. Hum Genet. 1996 Jul;98(1):102–108. doi: 10.1007/s004390050167. [DOI] [PubMed] [Google Scholar]
  35. Marsischky G. T., Filosi N., Kane M. F., Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996 Feb 15;10(4):407–420. doi: 10.1101/gad.10.4.407. [DOI] [PubMed] [Google Scholar]
  36. McDonald J. P., Levine A. S., Woodgate R. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics. 1997 Dec;147(4):1557–1568. doi: 10.1093/genetics/147.4.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Morrison A., Sugino A. The 3'-->5' exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet. 1994 Feb;242(3):289–296. doi: 10.1007/BF00280418. [DOI] [PubMed] [Google Scholar]
  38. Mortensen U. H., Bendixen C., Sunjevaric I., Rothstein R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10729–10734. doi: 10.1073/pnas.93.20.10729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Myung K., Datta A., Chen C., Kolodner R. D. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet. 2001 Jan;27(1):113–116. doi: 10.1038/83673. [DOI] [PubMed] [Google Scholar]
  40. Myung K., Datta A., Kolodner R. D. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell. 2001 Feb 9;104(3):397–408. doi: 10.1016/s0092-8674(01)00227-6. [DOI] [PubMed] [Google Scholar]
  41. Pâques F., Haber J. E. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Nov;17(11):6765–6771. doi: 10.1128/mcb.17.11.6765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Roche H., Gietz R. D., Kunz B. A. Specificities of the Saccharomyces cerevisiae rad6, rad18, and rad52 mutators exhibit different degrees of dependence on the REV3 gene product, a putative nonessential DNA polymerase. Genetics. 1995 Jun;140(2):443–456. doi: 10.1093/genetics/140.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Roche H., Gietz R. D., Kunz B. A. Specificity of the yeast rev3 delta antimutator and REV3 dependency of the mutator resulting from a defect (rad1 delta) in nucleotide excision repair. Genetics. 1994 Jul;137(3):637–646. doi: 10.1093/genetics/137.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sia E. A., Kokoska R. J., Dominska M., Greenwell P., Petes T. D. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol. 1997 May;17(5):2851–2858. doi: 10.1128/mcb.17.5.2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sugawara N., Haber J. E. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol. 1992 Feb;12(2):563–575. doi: 10.1128/mcb.12.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Swanson R. L., Morey N. J., Doetsch P. W., Jinks-Robertson S. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Apr;19(4):2929–2935. doi: 10.1128/mcb.19.4.2929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tishkoff D. X., Boerger A. L., Bertrand P., Filosi N., Gaida G. M., Kane M. F., Kolodner R. D. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7487–7492. doi: 10.1073/pnas.94.14.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tishkoff D. X., Filosi N., Gaida G. M., Kolodner R. D. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell. 1997 Jan 24;88(2):253–263. doi: 10.1016/s0092-8674(00)81846-2. [DOI] [PubMed] [Google Scholar]
  49. Tran H. T., Degtyareva N. P., Koloteva N. N., Sugino A., Masumoto H., Gordenin D. A., Resnick M. A. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol Cell Biol. 1995 Oct;15(10):5607–5617. doi: 10.1128/mcb.15.10.5607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ulrich H. D., Jentsch S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 2000 Jul 3;19(13):3388–3397. doi: 10.1093/emboj/19.13.3388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Viguera E., Canceill D., Ehrlich S. D. Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 2001 May 15;20(10):2587–2595. doi: 10.1093/emboj/20.10.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Waga S., Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem. 1998;67:721–751. doi: 10.1146/annurev.biochem.67.1.721. [DOI] [PubMed] [Google Scholar]
  53. Wierdl M., Dominska M., Petes T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997 Jul;146(3):769–779. doi: 10.1093/genetics/146.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Woodgate R. A plethora of lesion-replicating DNA polymerases. Genes Dev. 1999 Sep 1;13(17):2191–2195. doi: 10.1101/gad.13.17.2191. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES