Skip to main content
Genetics logoLink to Genetics
. 2002 Apr;160(4):1519–1533. doi: 10.1093/genetics/160.4.1519

Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing.

M Grauso 1, R A Reenan 1, E Culetto 1, D B Sattelle 1
PMCID: PMC1462077  PMID: 11973307

Abstract

Genome analysis of the fruit fly Drosophila melanogaster reveals three new ligand-gated ion channel subunits with the characteristic YXCC motif found only in alpha-type nicotinic acetylcholine receptor subunits. The subunits are designated Dalpha5, Dalpha6, and Dalpha7. Cloning of the Dalpha5 embryonic cDNAs reveals an atypically large N terminus, part of which is without identifiable sequence motifs and is specified by two polymorphic alleles. Embryonic clones from Dalpha6 contain multiple variant transcripts arising from alternative splicing as well as A-to-I pre-mRNA editing. Alternative splicing in Dalpha6 involves exons encoding nAChR functional domains. The Dalpha6 transcript is a target of the Drosophila adenosine deaminase acting on RNA (dADAR). This is the first case for any organism where a nAChR gene is the target of mRNA editing. Seven adenosines could be modified in the extracellular ligand-binding region of Dalpha6, four of which are also edited in the Dalpha6 ortholog in the tobacco budworm Heliothis virescens. The conservation of an editing site between the insect orders Diptera and Lepidoptera makes nAChR editing the most evolutionarily conserved invertebrate RNA editing site so far described. These findings add to our understanding of nAChR subunit diversity, which is increased and regulated by mechanisms acting at the genomic and mRNA levels.

Full Text

The Full Text of this article is available as a PDF (632.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Albert J. L., Lingle C. J. Activation of nicotinic acetylcholine receptors on cultured Drosophila and other insect neurones. J Physiol. 1993 Apr;463:605–630. doi: 10.1113/jphysiol.1993.sp019613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. Amar M., Thomas P., Wonnacott S., Lunt G. G. A nicotinic acetylcholine receptor subunit from insect brain forms a non-desensitising homo-oligomeric nicotinic acetylcholine receptor when expressed in Xenopus oocytes. Neurosci Lett. 1995 Oct 20;199(2):107–110. doi: 10.1016/0304-3940(95)12033-z. [DOI] [PubMed] [Google Scholar]
  5. Arias H. R. Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Res Brain Res Rev. 1997 Oct;25(2):133–191. doi: 10.1016/s0165-0173(97)00020-9. [DOI] [PubMed] [Google Scholar]
  6. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  7. Ballivet M., Alliod C., Bertrand S., Bertrand D. Nicotinic acetylcholine receptors in the nematode Caenorhabditis elegans. J Mol Biol. 1996 May 3;258(2):261–269. doi: 10.1006/jmbi.1996.0248. [DOI] [PubMed] [Google Scholar]
  8. Bertrand D., Ballivet M., Gomez M., Bertrand S., Phannavong B., Gundelfinger E. D. Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate beta 2 subunit and Drosophila alpha subunits. Eur J Neurosci. 1994 May 1;6(5):869–875. doi: 10.1111/j.1460-9568.1994.tb00997.x. [DOI] [PubMed] [Google Scholar]
  9. Bertrand D., Galzi J. L., Devillers-Thiéry A., Bertrand S., Changeux J. P. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6971–6975. doi: 10.1073/pnas.90.15.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bossy B., Ballivet M., Spierer P. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J. 1988 Mar;7(3):611–618. doi: 10.1002/j.1460-2075.1988.tb02854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chamaon K., Schulz R., Smalla K. H., Seidel B., Gundelfinger E. D. Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster: the alpha-subunit dalpha3 and the beta-type subunit ARD co-assemble within the same receptor complex. FEBS Lett. 2000 Oct 6;482(3):189–192. doi: 10.1016/s0014-5793(00)02057-3. [DOI] [PubMed] [Google Scholar]
  12. Changeux J. P., Edelstein S. J. Allosteric receptors after 30 years. Neuron. 1998 Nov;21(5):959–980. doi: 10.1016/s0896-6273(00)80616-9. [DOI] [PubMed] [Google Scholar]
  13. Cordero-Erausquin M., Marubio L. M., Klink R., Changeux J. P. Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol Sci. 2000 Jun;21(6):211–217. doi: 10.1016/s0165-6147(00)01489-9. [DOI] [PubMed] [Google Scholar]
  14. Corringer P. J., Le Novère N., Changeux J. P. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol. 2000;40:431–458. doi: 10.1146/annurev.pharmtox.40.1.431. [DOI] [PubMed] [Google Scholar]
  15. Couturier S., Bertrand D., Matter J. M., Hernandez M. C., Bertrand S., Millar N., Valera S., Barkas T., Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron. 1990 Dec;5(6):847–856. doi: 10.1016/0896-6273(90)90344-f. [DOI] [PubMed] [Google Scholar]
  16. Drisdel R. C., Green W. N. Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers. J Neurosci. 2000 Jan 1;20(1):133–139. doi: 10.1523/JNEUROSCI.20-01-00133.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Elgoyhen A. B., Vetter D. E., Katz E., Rothlin C. V., Heinemann S. F., Boulter J. alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A. 2001 Mar 6;98(6):3501–3506. doi: 10.1073/pnas.051622798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fleming J. T., Squire M. D., Barnes T. M., Tornoe C., Matsuda K., Ahnn J., Fire A., Sulston J. E., Barnard E. A., Sattelle D. B. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci. 1997 Aug 1;17(15):5843–5857. doi: 10.1523/JNEUROSCI.17-15-05843.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Galzi J. L., Changeux J. P. Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology. 1995 Jun;34(6):563–582. doi: 10.1016/0028-3908(95)00034-4. [DOI] [PubMed] [Google Scholar]
  20. Gundelfinger E. D., Hess N. Nicotinic acetylcholine receptors of the central nervous system of Drosophila. Biochim Biophys Acta. 1992 Nov 17;1137(3):299–308. doi: 10.1016/0167-4889(92)90150-a. [DOI] [PubMed] [Google Scholar]
  21. Hanrahan C. J., Palladino M. J., Ganetzky B., Reenan R. A. RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation. Genetics. 2000 Jul;155(3):1149–1160. doi: 10.1093/genetics/155.3.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hermsen B., Stetzer E., Thees R., Heiermann R., Schrattenholz A., Ebbinghaus U., Kretschmer A., Methfessel C., Reinhardt S., Maelicke A. Neuronal nicotinic receptors in the locust Locusta migratoria. Cloning and expression. J Biol Chem. 1998 Jul 17;273(29):18394–18404. doi: 10.1074/jbc.273.29.18394. [DOI] [PubMed] [Google Scholar]
  23. Higuchi M., Single F. N., Köhler M., Sommer B., Sprengel R., Seeburg P. H. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell. 1993 Dec 31;75(7):1361–1370. doi: 10.1016/0092-8674(93)90622-w. [DOI] [PubMed] [Google Scholar]
  24. Jonas P., Baumann A., Merz B., Gundelfinger E. D. Structure and developmental expression of the D alpha 2 gene encoding a novel nicotinic acetylcholine receptor protein of Drosophila melanogaster. FEBS Lett. 1990 Aug 20;269(1):264–268. doi: 10.1016/0014-5793(90)81170-s. [DOI] [PubMed] [Google Scholar]
  25. Kao P. N., Dwork A. J., Kaldany R. R., Silver M. L., Wideman J., Stein S., Karlin A. Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem. 1984 Oct 10;259(19):11662–11665. [PubMed] [Google Scholar]
  26. Karlin A., Akabas M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron. 1995 Dec;15(6):1231–1244. doi: 10.1016/0896-6273(95)90004-7. [DOI] [PubMed] [Google Scholar]
  27. Kuryatov A., Olale F., Cooper J., Choi C., Lindstrom J. Human alpha6 AChR subtypes: subunit composition, assembly, and pharmacological responses. Neuropharmacology. 2000 Oct;39(13):2570–2590. doi: 10.1016/s0028-3908(00)00144-1. [DOI] [PubMed] [Google Scholar]
  28. Köhler M., Burnashev N., Sakmann B., Seeburg P. H. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron. 1993 Mar;10(3):491–500. doi: 10.1016/0896-6273(93)90336-p. [DOI] [PubMed] [Google Scholar]
  29. Lansdell S. J., Millar N. S. Cloning and heterologous expression of Dalpha4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology. 2000 Oct;39(13):2604–2614. doi: 10.1016/s0028-3908(00)00111-8. [DOI] [PubMed] [Google Scholar]
  30. Lansdell S. J., Millar N. S. The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacology. 2000 Feb 14;39(4):671–679. doi: 10.1016/s0028-3908(99)00170-7. [DOI] [PubMed] [Google Scholar]
  31. Le Novère N., Changeux J. P. The Ligand Gated Ion Channel Database. Nucleic Acids Res. 1999 Jan 1;27(1):340–342. doi: 10.1093/nar/27.1.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Littleton J. T., Ganetzky B. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron. 2000 Apr;26(1):35–43. doi: 10.1016/s0896-6273(00)81135-6. [DOI] [PubMed] [Google Scholar]
  33. Ma E., Gu X. Q., Wu X., Xu T., Haddad G. G. Mutation in pre-mRNA adenosine deaminase markedly attenuates neuronal tolerance to O2 deprivation in Drosophila melanogaster. J Clin Invest. 2001 Mar;107(6):685–693. doi: 10.1172/JCI11625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Marshall J., Buckingham S. D., Shingai R., Lunt G. G., Goosey M. W., Darlison M. G., Sattelle D. B., Barnard E. A. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. EMBO J. 1990 Dec;9(13):4391–4398. doi: 10.1002/j.1460-2075.1990.tb07889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Matsuda K., Buckingham S. D., Freeman J. C., Squire M. D., Baylis H. A., Sattelle D. B. Effects of the alpha subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. Br J Pharmacol. 1998 Feb;123(3):518–524. doi: 10.1038/sj.bjp.0701618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Matsuda K., Buckingham S. D., Kleier D., Rauh J. J., Grauso M., Sattelle D. B. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci. 2001 Nov;22(11):573–580. doi: 10.1016/s0165-6147(00)01820-4. [DOI] [PubMed] [Google Scholar]
  37. Matsuda K., Shimomura M., Kondo Y., Ihara M., Hashigami K., Yoshida N., Raymond V., Mongan N. P., Freeman J. C., Komai K. Role of loop D of the alpha7 nicotinic acetylcholine receptor in its interaction with the insecticide imidacloprid and related neonicotinoids. Br J Pharmacol. 2000 Jul;130(5):981–986. doi: 10.1038/sj.bjp.0703374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McGehee D. S., Role L. W. Presynaptic ionotropic receptors. Curr Opin Neurobiol. 1996 Jun;6(3):342–349. doi: 10.1016/s0959-4388(96)80118-8. [DOI] [PubMed] [Google Scholar]
  39. Mongan N. P., Baylis H. A., Adcock C., Smith G. R., Sansom M. S., Sattelle D. B. An extensive and diverse gene family of nicotinic acetylcholine receptor alpha subunits in Caenorhabditis elegans. Receptors Channels. 1998;6(3):213–228. [PubMed] [Google Scholar]
  40. Niswender C. M., Copeland S. C., Herrick-Davis K., Emeson R. B., Sanders-Bush E. RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem. 1999 Apr 2;274(14):9472–9478. doi: 10.1074/jbc.274.14.9472. [DOI] [PubMed] [Google Scholar]
  41. Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature. 1982 Oct 28;299(5886):793–797. doi: 10.1038/299793a0. [DOI] [PubMed] [Google Scholar]
  42. Noselli S., Vincent A. The Drosophila melanogaster ribosomal protein L17A-encoding gene. Gene. 1992 Sep 10;118(2):273–278. doi: 10.1016/0378-1119(92)90199-y. [DOI] [PubMed] [Google Scholar]
  43. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  44. Palladino M. J., Keegan L. P., O'Connell M. A., Reenan R. A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell. 2000 Aug 18;102(4):437–449. doi: 10.1016/s0092-8674(00)00049-0. [DOI] [PubMed] [Google Scholar]
  45. Palladino M. J., Keegan L. P., O'Connell M. A., Reenan R. A. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA. 2000 Jul;6(7):1004–1018. doi: 10.1017/s1355838200000248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Piquet-Pellorce C., Homo-Delarche F., Dy M. Interleukin 1 and/or tumor necrosis factor-alpha synergize with granulocyte-macrophage colony-stimulating factor to enhance histamine synthesis in hematopoietic cells: role of prostaglandin E2. Eur J Immunol. 1989 Nov;19(11):1999–2003. doi: 10.1002/eji.1830191105. [DOI] [PubMed] [Google Scholar]
  47. Richmond J. E., Jorgensen E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci. 1999 Sep;2(9):791–797. doi: 10.1038/12160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sattelle David B., Culetto Emmanuel, Grauso Marta, Raymond Valérie, Franks Christopher J., Towers Paula. Functional genomics of ionotropic acetylcholine receptors in Caenorhabditis elegans and Drosophila melanogaster. Novartis Found Symp. 2002;245:240-57; discussion 257-60, 261-4. [PubMed] [Google Scholar]
  49. Sawruk E., Schloss P., Betz H., Schmitt B. Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated alpha-subunit. EMBO J. 1990 Sep;9(9):2671–2677. doi: 10.1002/j.1460-2075.1990.tb07452.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sawruk E., Udri C., Betz H., Schmitt B. SBD, a novel structural subunit of the Drosophila nicotinic acetylcholine receptor, shares its genomic localization with two alpha-subunits. FEBS Lett. 1990 Oct 29;273(1-2):177–181. doi: 10.1016/0014-5793(90)81078-3. [DOI] [PubMed] [Google Scholar]
  51. Schloss P., Betz H., Schröder C., Gundelfinger E. D. Neuronal nicotinic acetylcholine receptors in Drosophila: antibodies against an alpha-like and a non-alpha-subunit recognize the same high-affinity alpha-bungarotoxin binding complex. J Neurochem. 1991 Nov;57(5):1556–1562. doi: 10.1111/j.1471-4159.1991.tb06351.x. [DOI] [PubMed] [Google Scholar]
  52. Schulz R., Bertrand S., Chamaon K., Smalla K. H., Gundelfinger E. D., Bertrand D. Neuronal nicotinic acetylcholine receptors from Drosophila: two different types of alpha subunits coassemble within the same receptor complex. J Neurochem. 2000 Jun;74(6):2537–2546. doi: 10.1046/j.1471-4159.2000.0742537.x. [DOI] [PubMed] [Google Scholar]
  53. Schulz R., Sawruk E., Mülhardt C., Bertrand S., Baumann A., Phannavong B., Betz H., Bertrand D., Gundelfinger E. D., Schmitt B. D alpha3, a new functional alpha subunit of nicotinic acetylcholine receptors from Drosophila. J Neurochem. 1998 Aug;71(2):853–862. doi: 10.1046/j.1471-4159.1998.71020853.x. [DOI] [PubMed] [Google Scholar]
  54. Semenov E. P., Pak W. L. Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications. J Neurochem. 1999 Jan;72(1):66–72. doi: 10.1046/j.1471-4159.1999.0720066.x. [DOI] [PubMed] [Google Scholar]
  55. Sgard F., Fraser S. P., Katkowska M. J., Djamgoz M. B., Dunbar S. J., Windass J. D. Cloning and functional characterisation of two novel nicotinic acetylcholine receptor alpha subunits from the insect pest Myzus persicae. J Neurochem. 1998 Sep;71(3):903–912. doi: 10.1046/j.1471-4159.1998.71030903.x. [DOI] [PubMed] [Google Scholar]
  56. Smith L. A., Peixoto A. A., Hall J. C. RNA editing in the Drosophila DMCA1A calcium-channel alpha 1 subunit transcript. J Neurogenet. 1998 Nov;12(4):227–240. doi: 10.3109/01677069809108560. [DOI] [PubMed] [Google Scholar]
  57. Sommer B., Köhler M., Sprengel R., Seeburg P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991 Oct 4;67(1):11–19. doi: 10.1016/0092-8674(91)90568-j. [DOI] [PubMed] [Google Scholar]
  58. Swope S. L., Moss S. J., Raymond L. A., Huganir R. L. Regulation of ligand-gated ion channels by protein phosphorylation. Adv Second Messenger Phosphoprotein Res. 1999;33:49–78. doi: 10.1016/s1040-7952(99)80005-6. [DOI] [PubMed] [Google Scholar]
  59. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Unwin N. Projection structure of the nicotinic acetylcholine receptor: distinct conformations of the alpha subunits. J Mol Biol. 1996 Apr 5;257(3):586–596. doi: 10.1006/jmbi.1996.0187. [DOI] [PubMed] [Google Scholar]
  61. Villarroel A. Alternative splicing generates multiple mRNA forms of the acetylcholine receptor gamma-subunit in rat muscle. FEBS Lett. 1999 Jan 29;443(3):381–384. doi: 10.1016/s0014-5793(99)00012-5. [DOI] [PubMed] [Google Scholar]
  62. Weiland S., Bertrand D., Leonard S. Neuronal nicotinic acetylcholine receptors: from the gene to the disease. Behav Brain Res. 2000 Aug;113(1-2):43–56. doi: 10.1016/s0166-4328(00)00199-6. [DOI] [PubMed] [Google Scholar]
  63. Williams B. M., Temburni M. K., Levey M. S., Bertrand S., Bertrand D., Jacob M. H. The long internal loop of the alpha 3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nat Neurosci. 1998 Nov;1(7):557–562. doi: 10.1038/2792. [DOI] [PubMed] [Google Scholar]
  64. Womble D. D. GCG: The Wisconsin Package of sequence analysis programs. Methods Mol Biol. 2000;132:3–22. doi: 10.1385/1-59259-192-2:3. [DOI] [PubMed] [Google Scholar]
  65. ffrench-Constant R. H., Rocheleau T. A. Drosophila gamma-aminobutyric acid receptor gene Rdl shows extensive alternative splicing. J Neurochem. 1993 Jun;60(6):2323–2326. doi: 10.1111/j.1471-4159.1993.tb03523.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES