Skip to main content
Genetics logoLink to Genetics
. 2002 May;161(1):83–97. doi: 10.1093/genetics/161.1.83

Increased or decreased levels of Caenorhabditis elegans lon-3, a gene encoding a collagen, cause reciprocal changes in body length.

Josefin Nyström 1, Zai-Zhong Shen 1, Margareta Aili 1, Anthony J Flemming 1, Armand Leroi 1, Simon Tuck 1
PMCID: PMC1462080  PMID: 12019225

Abstract

Body length in C. elegans is regulated by a member of the TGFbeta family, DBL-1. Loss-of-function mutations in dbl-1, or in genes encoding components of the signaling pathway it activates, cause worms to be shorter than wild type and slightly thinner (Sma). Overexpression of dbl-1 confers the Lon phenotype characterized by an increase in body length. We show here that loss-of-function mutations in dbl-1 and lon-1, respectively, cause a decrease or increase in the ploidy of nuclei in the hypodermal syncytial cell, hyp7. To learn more about the regulation of body length in C. elegans we carried out a genetic screen for new mutations causing a Lon phenotype. We report here the cloning and characterization of lon-3. lon-3 is shown to encode a putative cuticle collagen that is expressed in hypodermal cells. We show that, whereas putative null mutations in lon-3 (or reduction of lon-3 activity by RNAi) causes a Lon phenotype, increasing lon-3 gene copy number causes a marked reduction in body length. Morphometric analyses indicate that the lon-3 loss-of-function phenotype resembles that caused by overexpression of dbl-1. Furthermore, phenotypes caused by defects in dbl-1 or lon-3 expression are in both cases suppressed by a null mutation in sqt-1, a second cuticle collagen gene. However, whereas loss of dbl-1 activity causes a reduction in hypodermal endoreduplication, the reduction in body length associated with overexpression of lon-3 occurs in the absence of defects in hypodermal ploidy.

Full Text

The Full Text of this article is available as a PDF (253.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird D. M. Sequence comparison of the Caenorhabditis elegans dpy-13 and col-34 genes, and their deduced collagen products. Gene. 1992 Oct 21;120(2):261–266. doi: 10.1016/0378-1119(92)90102-u. [DOI] [PubMed] [Google Scholar]
  2. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark D. V., Suleman D. S., Beckenbach K. A., Gilchrist E. J., Baillie D. L. Molecular cloning and characterization of the dpy-20 gene of Caenorhabditis elegans. Mol Gen Genet. 1995 May 10;247(3):367–378. doi: 10.1007/BF00293205. [DOI] [PubMed] [Google Scholar]
  4. Conlon I., Raff M. Size control in animal development. Cell. 1999 Jan 22;96(2):235–244. doi: 10.1016/s0092-8674(00)80563-2. [DOI] [PubMed] [Google Scholar]
  5. Cox G. N., Kramer J. M., Hirsh D. Number and organization of collagen genes in Caenorhabditis elegans. Mol Cell Biol. 1984 Nov;4(11):2389–2395. doi: 10.1128/mcb.4.11.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox G. N., Kusch M., Edgar R. S. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol. 1981 Jul;90(1):7–17. doi: 10.1083/jcb.90.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox G. N., Laufer J. S., Kusch M., Edgar R. S. Genetic and Phenotypic Characterization of Roller Mutants of CAENORHABDITIS ELEGANS. Genetics. 1980 Jun;95(2):317–339. doi: 10.1093/genetics/95.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cox G. N., Staprans S., Edgar R. S. The cuticle of Caenorhabditis elegans. II. Stage-specific changes in ultrastructure and protein composition during postembryonic development. Dev Biol. 1981 Sep;86(2):456–470. doi: 10.1016/0012-1606(81)90204-9. [DOI] [PubMed] [Google Scholar]
  9. Dibb N. J., Maruyama I. N., Krause M., Karn J. Sequence analysis of the complete Caenorhabditis elegans myosin heavy chain gene family. J Mol Biol. 1989 Feb 5;205(3):603–613. doi: 10.1016/0022-2836(89)90229-5. [DOI] [PubMed] [Google Scholar]
  10. Estevez M., Attisano L., Wrana J. L., Albert P. S., Massagué J., Riddle D. L. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature. 1993 Oct 14;365(6447):644–649. doi: 10.1038/365644a0. [DOI] [PubMed] [Google Scholar]
  11. Fire A., Harrison S. W., Dixon D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene. 1990 Sep 14;93(2):189–198. doi: 10.1016/0378-1119(90)90224-f. [DOI] [PubMed] [Google Scholar]
  12. Flemming A. J., Shen Z. Z., Cunha A., Emmons S. W., Leroi A. M. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5285–5290. doi: 10.1073/pnas.97.10.5285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
  14. Gilleard J. S., Barry J. D., Johnstone I. L. cis regulatory requirements for hypodermal cell-specific expression of the Caenorhabditis elegans cuticle collagen gene dpy-7. Mol Cell Biol. 1997 Apr;17(4):2301–2311. doi: 10.1128/mcb.17.4.2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hedgecock E. M., Culotti J. G., Hall D. H., Stern B. D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987 Jul;100(3):365–382. doi: 10.1242/dev.100.3.365. [DOI] [PubMed] [Google Scholar]
  16. Hedgecock E. M., White J. G. Polyploid tissues in the nematode Caenorhabditis elegans. Dev Biol. 1985 Jan;107(1):128–133. doi: 10.1016/0012-1606(85)90381-1. [DOI] [PubMed] [Google Scholar]
  17. Hill K. L., Harfe B. D., Dobbins C. A., L'Hernault S. W. dpy-18 encodes an alpha-subunit of prolyl-4-hydroxylase in caenorhabditis elegans. Genetics. 2000 Jul;155(3):1139–1148. doi: 10.1093/genetics/155.3.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Honigberg L., Kenyon C. Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development. 2000 Nov;127(21):4655–4668. doi: 10.1242/dev.127.21.4655. [DOI] [PubMed] [Google Scholar]
  19. Johnstone I. L., Barry J. D. Temporal reiteration of a precise gene expression pattern during nematode development. EMBO J. 1996 Jul 15;15(14):3633–3639. [PMC free article] [PubMed] [Google Scholar]
  20. Johnstone I. L., Shafi Y., Barry J. D. Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy-7. EMBO J. 1992 Nov;11(11):3857–3863. doi: 10.1002/j.1460-2075.1992.tb05478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kramer J. M., French R. P., Park E. C., Johnson J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol. 1990 May;10(5):2081–2089. doi: 10.1128/mcb.10.5.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kramer J. M., Johnson J. J. Analysis of mutations in the sqt-1 and rol-6 collagen genes of Caenorhabditis elegans. Genetics. 1993 Dec;135(4):1035–1045. doi: 10.1093/genetics/135.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kramer J. M. Structures and functions of collagens in Caenorhabditis elegans. FASEB J. 1994 Mar 1;8(3):329–336. doi: 10.1096/fasebj.8.3.8143939. [DOI] [PubMed] [Google Scholar]
  24. Krishna S., Maduzia L. L., Padgett R. W. Specificity of TGFbeta signaling is conferred by distinct type I receptors and their associated SMAD proteins in Caenorhabditis elegans. Development. 1999 Jan;126(2):251–260. doi: 10.1242/dev.126.2.251. [DOI] [PubMed] [Google Scholar]
  25. Kusch M., Edgar R. S. Genetic studies of unusual loci that affect body shape of the nematode Caenorhabditis elegans and may code for cuticle structural proteins. Genetics. 1986 Jul;113(3):621–639. doi: 10.1093/genetics/113.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Maeda I., Kohara Y., Yamamoto M., Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol. 2001 Feb 6;11(3):171–176. doi: 10.1016/s0960-9822(01)00052-5. [DOI] [PubMed] [Google Scholar]
  27. Maruyama I. N., Miller D. M., Brenner S. Myosin heavy chain gene amplification as a suppressor mutation in Caenorhabditis elegans. Mol Gen Genet. 1989 Oct;219(1-2):113–118. doi: 10.1007/BF00261165. [DOI] [PubMed] [Google Scholar]
  28. Mochii M., Yoshida S., Morita K., Kohara Y., Ueno N. Identification of transforming growth factor-beta- regulated genes in caenorhabditis elegans by differential hybridization of arrayed cDNAs. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15020–15025. doi: 10.1073/pnas.96.26.15020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morita K., Chow K. L., Ueno N. Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-beta family. Development. 1999 Mar;126(6):1337–1347. doi: 10.1242/dev.126.6.1337. [DOI] [PubMed] [Google Scholar]
  30. Park E. C., Horvitz H. R. Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics. 1986 Aug;113(4):821–852. doi: 10.1093/genetics/113.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Peixoto C. A., De Souza W. Cytochemical characterization of the cuticle of Caenorhabditis elegans (Nematoda: Rhabditoidea). J Submicrosc Cytol Pathol. 1992 Jul;24(3):425–435. [PubMed] [Google Scholar]
  32. Ren P., Lim C. S., Johnsen R., Albert P. S., Pilgrim D., Riddle D. L. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science. 1996 Nov 22;274(5291):1389–1391. doi: 10.1126/science.274.5291.1389. [DOI] [PubMed] [Google Scholar]
  33. Riddle D. L., Brenner S. Indirect suppression in Caenorhabditis elegans. Genetics. 1978 Jun;89(2):299–314. doi: 10.1093/genetics/89.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Savage C., Das P., Finelli A. L., Townsend S. R., Sun C. Y., Baird S. E., Padgett R. W. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):790–794. doi: 10.1073/pnas.93.2.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shim J., Lee J. Molecular genetic analysis of apm-2 and aps-2, genes encoding the medium and small chains of the AP-2 clathrin-associated protein complex in the nematode Caenorhabditis elegans. Mol Cells. 2000 Jun 30;10(3):309–316. [PubMed] [Google Scholar]
  36. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
  37. Suzuki Y., Yandell M. D., Roy P. J., Krishna S., Savage-Dunn C., Ross R. M., Padgett R. W., Wood W. B. A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in Caenorhabditis elegans. Development. 1999 Jan;126(2):241–250. doi: 10.1242/dev.126.2.241. [DOI] [PubMed] [Google Scholar]
  38. Tuck S., Greenwald I. lin-25, a gene required for vulval induction in Caenorhabditis elegans. Genes Dev. 1995 Feb 1;9(3):341–357. doi: 10.1101/gad.9.3.341. [DOI] [PubMed] [Google Scholar]
  39. Yamaguchi Y., Mann D. M., Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature. 1990 Jul 19;346(6281):281–284. doi: 10.1038/346281a0. [DOI] [PubMed] [Google Scholar]
  40. Yang J., Kramer J. M. In vitro mutagenesis of Caenorhabditis elegans cuticle collagens identifies a potential subtilisin-like protease cleavage site and demonstrates that carboxyl domain disulfide bonding is required for normal function but not assembly. Mol Cell Biol. 1994 Apr;14(4):2722–2730. doi: 10.1128/mcb.14.4.2722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yang J., Kramer J. M. Proteolytic processing of Caenorhabditis elegans SQT-1 cuticle collagen is inhibited in right roller mutants whereas cross-linking is inhibited in left roller mutants. J Biol Chem. 1999 Nov 12;274(46):32744–32749. doi: 10.1074/jbc.274.46.32744. [DOI] [PubMed] [Google Scholar]
  42. van der Keyl H., Kim H., Espey R., Oke C. V., Edwards M. K. Caenorhabditis elegans sqt-3 mutants have mutations in the col-1 collagen gene. Dev Dyn. 1994 Sep;201(1):86–94. doi: 10.1002/aja.1002010109. [DOI] [PubMed] [Google Scholar]
  43. van der Rest M., Garrone R. Collagen family of proteins. FASEB J. 1991 Oct;5(13):2814–2823. [PubMed] [Google Scholar]
  44. von Mende N., Bird D. M., Albert P. S., Riddle D. L. dpy-13: a nematode collagen gene that affects body shape. Cell. 1988 Nov 18;55(4):567–576. doi: 10.1016/0092-8674(88)90215-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES