Skip to main content
Genetics logoLink to Genetics
. 2002 May;161(1):121–131. doi: 10.1093/genetics/161.1.121

A lin-45 raf enhancer screen identifies eor-1, eor-2 and unusual alleles of Ras pathway genes in Caenorhabditis elegans.

Christian E Rocheleau 1, Robyn M Howard 1, Alissa P Goldman 1, Mandy L Volk 1, Laura J Girard 1, Meera V Sundaram 1
PMCID: PMC1462089  PMID: 12019228

Abstract

In Caenorhabditis elegans, the Ras/Raf/MEK/ERK signal transduction pathway controls multiple processes including excretory system development, P12 fate specification, and vulval cell fate specification. To identify positive regulators of Ras signaling, we conducted a genetic screen for mutations that enhance the excretory system and egg-laying defects of hypomorphic lin-45 raf mutants. This screen identified unusual alleles of several known Ras pathway genes, including a mutation removing the second SH3 domain of the sem-5/Grb2 adaptor, a temperature-sensitive mutation in the helical hairpin of let-341/Sos, a gain-of-function mutation affecting a potential phosphorylation site of the lin-1 Ets domain transcription factor, a dominant-negative allele of ksr-1, and hypomorphic alleles of sur-6/PP2A-B, sur-2/Mediator, and lin-25. In addition, this screen identified multiple alleles of two newly identified genes, eor-1 and eor-2, that play a relatively weak role in vulval fate specification but positively regulate Ras signaling during excretory system development and P12 fate specification. The spectrum of identified mutations argues strongly for the specificity of the enhancer screen and for a close involvement of eor-1 and eor-2 in Ras signaling.

Full Text

The Full Text of this article is available as a PDF (194.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beitel G. J., Tuck S., Greenwald I., Horvitz H. R. The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway. Genes Dev. 1995 Dec 15;9(24):3149–3162. doi: 10.1101/gad.9.24.3149. [DOI] [PubMed] [Google Scholar]
  2. Boriack-Sjodin P. A., Margarit S. M., Bar-Sagi D., Kuriyan J. The structural basis of the activation of Ras by Sos. Nature. 1998 Jul 23;394(6691):337–343. doi: 10.1038/28548. [DOI] [PubMed] [Google Scholar]
  3. Boyer T. G., Martin M. E., Lees E., Ricciardi R. P., Berk A. J. Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein. Nature. 1999 May 20;399(6733):276–279. doi: 10.1038/20466. [DOI] [PubMed] [Google Scholar]
  4. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell S. L., Khosravi-Far R., Rossman K. L., Clark G. J., Der C. J. Increasing complexity of Ras signaling. Oncogene. 1998 Sep 17;17(11 REVIEWS):1395–1413. doi: 10.1038/sj.onc.1202174. [DOI] [PubMed] [Google Scholar]
  6. Chang C., Newman A. P., Sternberg P. W. Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia. Curr Biol. 1999 Mar 11;9(5):237–246. doi: 10.1016/s0960-9822(99)80112-2. [DOI] [PubMed] [Google Scholar]
  7. Church D. L., Guan K. L., Lambie E. J. Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development. 1995 Aug;121(8):2525–2535. doi: 10.1242/dev.121.8.2525. [DOI] [PubMed] [Google Scholar]
  8. Denouel-Galy A., Douville E. M., Warne P. H., Papin C., Laugier D., Calothy G., Downward J., Eychène A. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol. 1998 Jan 1;8(1):46–55. doi: 10.1016/s0960-9822(98)70019-3. [DOI] [PubMed] [Google Scholar]
  9. Downward J. Control of ras activation. Cancer Surv. 1996;27:87–100. [PubMed] [Google Scholar]
  10. Forrester W. C., Perens E., Zallen J. A., Garriga G. Identification of Caenorhabditis elegans genes required for neuronal differentiation and migration. Genetics. 1998 Jan;148(1):151–165. doi: 10.1093/genetics/148.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
  12. Hajnal A., Whitfield C. W., Kim S. K. Inhibition of Caenorhabditis elegans vulval induction by gap-1 and by let-23 receptor tyrosine kinase. Genes Dev. 1997 Oct 15;11(20):2715–2728. doi: 10.1101/gad.11.20.2715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Han M., Aroian R. V., Sternberg P. W. The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. Genetics. 1990 Dec;126(4):899–913. doi: 10.1093/genetics/126.4.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobs D., Beitel G. J., Clark S. G., Horvitz H. R., Kornfeld K. Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics. 1998 Aug;149(4):1809–1822. doi: 10.1093/genetics/149.4.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobs D., Glossip D., Xing H., Muslin A. J., Kornfeld K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 1999 Jan 15;13(2):163–175. [PMC free article] [PubMed] [Google Scholar]
  16. Jiang L. I., Sternberg P. W. Interactions of EGF, Wnt and HOM-C genes specify the P12 neuroectoblast fate in C. elegans. Development. 1998 Jun;125(12):2337–2347. doi: 10.1242/dev.125.12.2337. [DOI] [PubMed] [Google Scholar]
  17. Johnsen R. C., Baillie D. L. Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans. Genetics. 1991 Nov;129(3):735–752. doi: 10.1093/genetics/129.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kornfeld K., Hom D. B., Horvitz H. R. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell. 1995 Dec 15;83(6):903–913. doi: 10.1016/0092-8674(95)90206-6. [DOI] [PubMed] [Google Scholar]
  19. Le N., Simon M. A. Disabled is a putative adaptor protein that functions during signaling by the sevenless receptor tyrosine kinase. Mol Cell Biol. 1998 Aug;18(8):4844–4854. doi: 10.1128/mcb.18.8.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maloof J. N., Kenyon C. The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling. Development. 1998 Jan;125(2):181–190. doi: 10.1242/dev.125.2.181. [DOI] [PubMed] [Google Scholar]
  21. Meneely P. M., Herman R. K. Lethals, steriles and deficiencies in a region of the X chromosome of Caenorhabditis elegans. Genetics. 1979 May;92(1):99–115. doi: 10.1093/genetics/92.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morrison D. K., Cutler R. E. The complexity of Raf-1 regulation. Curr Opin Cell Biol. 1997 Apr;9(2):174–179. doi: 10.1016/s0955-0674(97)80060-9. [DOI] [PubMed] [Google Scholar]
  23. Morrison D. K. KSR: a MAPK scaffold of the Ras pathway? J Cell Sci. 2001 May;114(Pt 9):1609–1612. doi: 10.1242/jcs.114.9.1609. [DOI] [PubMed] [Google Scholar]
  24. Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994 Sep 22;371(6495):297–300. doi: 10.1038/371297a0. [DOI] [PubMed] [Google Scholar]
  25. Nilsson L., Tiensuu T., Tuck S. Caenorhabditis elegans lin-25: a study of its role in multiple cell fate specification events involving Ras and the identification and characterization of evolutionarily conserved domains. Genetics. 2000 Nov;156(3):1083–1096. doi: 10.1093/genetics/156.3.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nimnual A. S., Yatsula B. A., Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 1998 Jan 23;279(5350):560–563. doi: 10.1126/science.279.5350.560. [DOI] [PubMed] [Google Scholar]
  27. Ohmachi Mitsue, Rocheleau Christian E., Church Diane, Lambie Eric, Schedl Tim, Sundaram Meera V. C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation. Curr Biol. 2002 Mar 5;12(5):427–433. doi: 10.1016/s0960-9822(02)00690-5. [DOI] [PubMed] [Google Scholar]
  28. Piano F., Schetter A. J., Mangone M., Stein L., Kemphues K. J. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr Biol. 2000 Dec 14;10(24):1619–1622. doi: 10.1016/s0960-9822(00)00869-1. [DOI] [PubMed] [Google Scholar]
  29. Rachez C., Freedman L. P. Mediator complexes and transcription. Curr Opin Cell Biol. 2001 Jun;13(3):274–280. doi: 10.1016/s0955-0674(00)00209-x. [DOI] [PubMed] [Google Scholar]
  30. Rosenbluth R. E., Baillie D. L. The genetic analysis of a reciprocal translocation, eT1(III; V), in Caenorhabditis elegans. Genetics. 1981 Nov-Dec;99(3-4):415–428. doi: 10.1093/genetics/99.3-4.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sastry L., Lin W., Wong W. T., Di Fiore P. P., Scoppa C. A., King C. R. Quantitative analysis of Grb2-Sos1 interaction: the N-terminal SH3 domain of Grb2 mediates affinity. Oncogene. 1995 Sep 21;11(6):1107–1112. [PubMed] [Google Scholar]
  32. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000 Oct 13;103(2):211–225. doi: 10.1016/s0092-8674(00)00114-8. [DOI] [PubMed] [Google Scholar]
  33. Sieburth D. S., Sundaram M., Howard R. M., Han M. A PP2A regulatory subunit positively regulates Ras-mediated signaling during Caenorhabditis elegans vulval induction. Genes Dev. 1999 Oct 1;13(19):2562–2569. doi: 10.1101/gad.13.19.2562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Simon M. A. Receptor tyrosine kinases: specific outcomes from general signals. Cell. 2000 Sep 29;103(1):13–15. doi: 10.1016/s0092-8674(00)00100-8. [DOI] [PubMed] [Google Scholar]
  35. Singh N., Han M. sur-2, a novel gene, functions late in the let-60 ras-mediated signaling pathway during Caenorhabditis elegans vulval induction. Genes Dev. 1995 Sep 15;9(18):2251–2265. doi: 10.1101/gad.9.18.2251. [DOI] [PubMed] [Google Scholar]
  36. Stewart S., Sundaram M., Zhang Y., Lee J., Han M., Guan K. L. Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol. 1999 Aug;19(8):5523–5534. doi: 10.1128/mcb.19.8.5523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steyerberg E. W., Kievit J., de Mol Van Otterloo J. C., van Bockel J. H., Eijkemans M. J., Habbema J. D. Perioperative mortality of elective abdominal aortic aneurysm surgery. A clinical prediction rule based on literature and individual patient data. Arch Intern Med. 1995 Oct 9;155(18):1998–2004. [PubMed] [Google Scholar]
  38. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
  39. Sundaram M., Han M. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell. 1995 Dec 15;83(6):889–901. doi: 10.1016/0092-8674(95)90205-8. [DOI] [PubMed] [Google Scholar]
  40. Sundaram M., Yochem J., Han M. A Ras-mediated signal transduction pathway is involved in the control of sex myoblast migration in Caenorhabditis elegans. Development. 1996 Sep;122(9):2823–2833. doi: 10.1242/dev.122.9.2823. [DOI] [PubMed] [Google Scholar]
  41. Tan P. B., Kim S. K. Signaling specificity: the RTK/RAS/MAP kinase pathway in metazoans. Trends Genet. 1999 Apr;15(4):145–149. doi: 10.1016/s0168-9525(99)01694-7. [DOI] [PubMed] [Google Scholar]
  42. Therrien M., Chang H. C., Solomon N. M., Karim F. D., Wassarman D. A., Rubin G. M. KSR, a novel protein kinase required for RAS signal transduction. Cell. 1995 Dec 15;83(6):879–888. doi: 10.1016/0092-8674(95)90204-x. [DOI] [PubMed] [Google Scholar]
  43. Tuck S., Greenwald I. lin-25, a gene required for vulval induction in Caenorhabditis elegans. Genes Dev. 1995 Feb 1;9(3):341–357. doi: 10.1101/gad.9.3.341. [DOI] [PubMed] [Google Scholar]
  44. Wang M., Sternberg P. W. Patterning of the C. elegans 1 degrees vulval lineage by RAS and Wnt pathways. Development. 2000 Dec;127(23):5047–5058. doi: 10.1242/dev.127.23.5047. [DOI] [PubMed] [Google Scholar]
  45. Wassarman D. A., Therrien M., Rubin G. M. The Ras signaling pathway in Drosophila. Curr Opin Genet Dev. 1995 Feb;5(1):44–50. doi: 10.1016/s0959-437x(95)90052-7. [DOI] [PubMed] [Google Scholar]
  46. Xu X. X., Yi T., Tang B., Lambeth J. D. Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene. 1998 Mar 26;16(12):1561–1569. doi: 10.1038/sj.onc.1201678. [DOI] [PubMed] [Google Scholar]
  47. Yordy J. S., Muise-Helmericks R. C. Signal transduction and the Ets family of transcription factors. Oncogene. 2000 Dec 18;19(55):6503–6513. doi: 10.1038/sj.onc.1204036. [DOI] [PubMed] [Google Scholar]
  48. Yu W., Fantl W. J., Harrowe G., Williams L. T. Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol. 1998 Jan 1;8(1):56–64. doi: 10.1016/s0960-9822(98)70020-x. [DOI] [PubMed] [Google Scholar]
  49. Zhou J., Hsieh J. T. The inhibitory role of DOC-2/DAB2 in growth factor receptor-mediated signal cascade. DOC-2/DAB2-mediated inhibition of ERK phosphorylation via binding to Grb2. J Biol Chem. 2001 May 22;276(30):27793–27798. doi: 10.1074/jbc.M102803200. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES