Skip to main content
Genetics logoLink to Genetics
. 2002 May;161(1):333–344. doi: 10.1093/genetics/161.1.333

Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill.

Michael S Georgiady 1, Richard W Whitkus 1, Elizabeth M Lord 1
PMCID: PMC1462093  PMID: 12019247

Abstract

The evolution of inbreeding is common throughout the angiosperms, although little is known about the developmental and genetic processes involved. Lycopersicon pimpinellifolium (currant tomato) is a self-compatible species with variation in outcrossing rate correlated with floral morphology. Mature flowers from inbreeding and outcrossing populations differ greatly in characters affecting mating behavior (petal, anther, and style lengths); other flower parts (sepals, ovaries) show minimal differences. Analysis of genetic behavior, including quantitative trait locus (QTL) mapping, was performed on representative selfing and outcrossing plants derived from two contrasting natural populations. Six morphological traits were analyzed: flowers per inflorescence; petal, anther, and style lengths; and lengths of the fertile and sterile portions of anthers. All traits were smaller in the selfing parent and had continuous patterns of segregation in the F(2). Phenotypic correlations among traits were all positive, but varied in strength. Quantitative trait locus mapping was done using 48 RFLP markers. Five QTL total were found involving four of the six traits: total anther length, anther sterile length, style length, and flowers per inflorescence. Each of these four traits had a QTL of major (>25%) effect on phenotypic variance.

Full Text

The Full Text of this article is available as a PDF (192.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpert K. B., Tanksley S. D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15503–15507. doi: 10.1073/pnas.93.26.15503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernacchi D., Tanksley S. D. An interspecific backcross of Lycopersicon esculentum x L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics. 1997 Oct;147(2):861–877. doi: 10.1093/genetics/147.2.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doebley J. Mapping the genes that made maize. Trends Genet. 1992 Sep;8(9):302–307. doi: 10.1016/0168-9525(92)90261-2. [DOI] [PubMed] [Google Scholar]
  4. Doebley J., Stec A. Genetic analysis of the morphological differences between maize and teosinte. Genetics. 1991 Sep;129(1):285–295. doi: 10.1093/genetics/129.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doebley J., Stec A., Hubbard L. The evolution of apical dominance in maize. Nature. 1997 Apr 3;386(6624):485–488. doi: 10.1038/386485a0. [DOI] [PubMed] [Google Scholar]
  6. Frary A., Nesbitt T. C., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K. B., Tanksley S. D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000 Jul 7;289(5476):85–88. doi: 10.1126/science.289.5476.85. [DOI] [PubMed] [Google Scholar]
  7. Lande R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics. 1981 Nov-Dec;99(3-4):541–553. doi: 10.1093/genetics/99.3-4.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  10. Lin J. Z., Ritland K. Quantitative trait loci differentiating the outbreeding Mimulus guttatus from the inbreeding M. platycalyx. Genetics. 1997 Jul;146(3):1115–1121. doi: 10.1093/genetics/146.3.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Macnair M. R., Cumbes Q. J. The genetic architecture of interspecific variation in mimulus. Genetics. 1989 May;122(1):211–222. doi: 10.1093/genetics/122.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  14. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weigel D., Meyerowitz E. M. The ABCs of floral homeotic genes. Cell. 1994 Jul 29;78(2):203–209. doi: 10.1016/0092-8674(94)90291-7. [DOI] [PubMed] [Google Scholar]
  16. Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES