Skip to main content
Genetics logoLink to Genetics
. 2002 May;161(1):365–372. doi: 10.1093/genetics/161.1.365

A reaction-diffusion model for interference in meiotic crossing over.

Youhei Fujitani 1, Shintaro Mori 1, Ichizo Kobayashi 1
PMCID: PMC1462095  PMID: 12019250

Abstract

One crossover point between a pair of homologous chromosomes in meiosis appears to interfere with occurrence of another in the neighborhood. It has been revealed that Drosophila and Neurospora, in spite of their large difference in the frequency of crossover points, show very similar plots of coincidence-a measure of the interference-against the genetic distance of the interval, defined as one-half the average number of crossover points within the interval. We here propose a simple reaction-diffusion model, where a "randomly walking" precursor becomes immobilized and matures into a crossover point. The interference is caused by pair-annihilation of the random walkers due to their collision and by annihilation of a random walker due to its collision with an immobilized point. This model has two parameters-the initial density of the random walkers and the rate of its processing into a crossover point. We show numerically that, as the former increases and/or the latter decreases, plotted curves of the coincidence vs. the genetic distance converge on a unique curve. Thus, our model explains the similarity between Drosophila and Neurospora without parameter values adjusted finely, although it is not a "genetic model" but is a "physical model," specifying explicitly what happens physically.

Full Text

The Full Text of this article is available as a PDF (145.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. K., Offenberg H. H., Verkuijlen W. M., Heyting C. RecA-like proteins are components of early meiotic nodules in lily. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6868–6873. doi: 10.1073/pnas.94.13.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop D. K. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell. 1994 Dec 16;79(6):1081–1092. doi: 10.1016/0092-8674(94)90038-8. [DOI] [PubMed] [Google Scholar]
  3. Bähler J., Wyler T., Loidl J., Kohli J. Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis. J Cell Biol. 1993 Apr;121(2):241–256. doi: 10.1083/jcb.121.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Egel-Mitani M., Olson L. W., Egel R. Meiosis in Aspergillus nidulans: another example for lacking synaptonemal complexes in the absence of crossover interference. Hereditas. 1982;97(2):179–187. doi: 10.1111/j.1601-5223.1982.tb00761.x. [DOI] [PubMed] [Google Scholar]
  5. Foss E., Lande R., Stahl F. W., Steinberg C. M. Chiasma interference as a function of genetic distance. Genetics. 1993 Mar;133(3):681–691. doi: 10.1093/genetics/133.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujitani Y., Kobayashi I. Effect of DNA sequence divergence on homologous recombination as analyzed by a random-walk model. Genetics. 1999 Dec;153(4):1973–1988. doi: 10.1093/genetics/153.4.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fujitani Y., Yamamoto K., Kobayashi I. Dependence of frequency of homologous recombination on the homology length. Genetics. 1995 Jun;140(2):797–809. doi: 10.1093/genetics/140.2.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein D. R., Zhao H., Speed T. P. Relative efficiencies of chi 2 models of recombination for exclusion mapping and gene ordering. Genomics. 1995 May 20;27(2):265–273. doi: 10.1006/geno.1995.1041. [DOI] [PubMed] [Google Scholar]
  9. Haber J. E. A super new twist on the initiation of meiotic recombination. Cell. 1997 Apr 18;89(2):163–166. doi: 10.1016/s0092-8674(00)80194-4. [DOI] [PubMed] [Google Scholar]
  10. Ishijima A., Harada Y., Kojima H., Funatsu T., Higuchi H., Yanagida T. Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem Biophys Res Commun. 1994 Mar 15;199(2):1057–1063. doi: 10.1006/bbrc.1994.1336. [DOI] [PubMed] [Google Scholar]
  11. Kabata H., Kurosawa O., Arai I., Washizu M., Margarson S. A., Glass R. E., Shimamoto N. Visualization of single molecules of RNA polymerase sliding along DNA. Science. 1993 Dec 3;262(5139):1561–1563. doi: 10.1126/science.8248804. [DOI] [PubMed] [Google Scholar]
  12. King J. S., Mortimer R. K. A polymerization model of chiasma interference and corresponding computer simulation. Genetics. 1990 Dec;126(4):1127–1138. doi: 10.1093/genetics/126.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lin S., Speed T. P. Relative efficiencies of the chi-square recombination models for gene mapping with human pedigree data. Ann Hum Genet. 1999 Jan;63(Pt 1):81–95. doi: 10.1046/j.1469-1809.1999.6310081.x. [DOI] [PubMed] [Google Scholar]
  14. McPeek M. S., Speed T. P. Modeling interference in genetic recombination. Genetics. 1995 Feb;139(2):1031–1044. doi: 10.1093/genetics/139.2.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PERKINS D. D. Crossing-over and interference in a multiply marked chromosome arm of Neurospora. Genetics. 1962 Sep;47:1253–1274. doi: 10.1093/genetics/47.9.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roeder G. S. Meiotic chromosomes: it takes two to tango. Genes Dev. 1997 Oct 15;11(20):2600–2621. doi: 10.1101/gad.11.20.2600. [DOI] [PubMed] [Google Scholar]
  17. STRICKLAND W. N. Tetrad analysis of short chromosome regions of Neurospora crassa. Genetics. 1961 Sep;46:1125–1141. doi: 10.1093/genetics/46.9.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Storlazzi A., Xu L., Schwacha A., Kleckner N. Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9043–9048. doi: 10.1073/pnas.93.17.9043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sym M., Roeder G. S. Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell. 1994 Oct 21;79(2):283–292. doi: 10.1016/0092-8674(94)90197-x. [DOI] [PubMed] [Google Scholar]
  20. Thompson B. J., Camien M. N., Warner R. C. Kinetics of branch migration in double-stranded DNA. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2299–2303. doi: 10.1073/pnas.73.7.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WEINSTEIN A. The geometry and mechanics of crossing over. Cold Spring Harb Symp Quant Biol. 1958;23:177–196. doi: 10.1101/sqb.1958.023.01.022. [DOI] [PubMed] [Google Scholar]
  22. Weinstein A. The Theory of Multiple-Strand Crossing over. Genetics. 1936 May;21(3):155–199. doi: 10.1093/genetics/21.3.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zhao H., McPeek M. S., Speed T. P. Statistical analysis of chromatid interference. Genetics. 1995 Feb;139(2):1057–1065. doi: 10.1093/genetics/139.2.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zickler D., Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet. 1999;33:603–754. doi: 10.1146/annurev.genet.33.1.603. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES