Skip to main content
Genetics logoLink to Genetics
. 2002 May;161(1):345–353. doi: 10.1093/genetics/161.1.345

A molecular cytogenetic map of sorghum chromosome 1. Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes.

M N Islam-Faridi 1, K L Childs 1, P E Klein 1, G Hodnett 1, M A Menz 1, R R Klein 1, W L Rooney 1, J E Mullet 1, D M Stelly 1, H J Price 1
PMCID: PMC1462096  PMID: 12019248

Abstract

We used structural genomic resources for Sorghum bicolor (L.) Moench to target and develop multiple molecular cytogenetic probes that would provide extensive coverage for a specific chromosome of sorghum. Bacterial artificial chromosome (BAC) clones containing molecular markers mapped across sorghum linkage group A were labeled as probes for fluorescence in situ hybridization (FISH). Signals from single-, dual-, and multiprobe BAC-FISH to spreads of mitotic chromosomes and pachytene bivalents were associated with the largest sorghum chromosome, which bears the nucleolus organizing region (NOR). The order of individual BAC-FISH loci along the chromosome was fully concordant to that of marker loci along the linkage map. In addition, the order of several tightly linked molecular markers was clarified by FISH analysis. The FISH results indicate that markers from the linkage map positions 0.0-81.8 cM reside in the short arm of chromosome 1 whereas markers from 81.8-242.9 cM are located in the long arm of chromosome 1. The centromere and NOR were located in a large heterochromatic region that spans approximately 60% of chromosome 1. In contrast, this region represents only 0.7% of the total genetic map distance of this chromosome. Variation in recombination frequency among euchromatic chromosomal regions also was apparent. The integrated data underscore the value of cytological data, because minor errors and uncertainties in linkage maps can involve huge physical regions. The successful development of multiprobe FISH cocktails suggests that it is feasible to develop chromosome-specific "paints" from genomic resources rather than flow sorting or microdissection and that when applied to pachytene chromatin, such cocktails provide an especially powerful framework for mapping. Such a molecular cytogenetic infrastructure would be inherently cross-linked with other genomic tools and thereby establish a cytogenomics system with extensive utility in development and application of genomic resources, cloning, transgene localization, development of plant "chromonomics," germplasm introgression, and marker-assisted breeding. In combination with previously reported work, the results indicate that a sorghum cytogenomics system would be partially applicable to other gramineous genera.

Full Text

The Full Text of this article is available as a PDF (453.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barakat A., Carels N., Bernardi G. The distribution of genes in the genomes of Gramineae. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6857–6861. doi: 10.1073/pnas.94.13.6857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhattramakki D., Dong J., Chhabra A. K., Hart G. E. An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome. 2000 Dec;43(6):988–1002. [PubMed] [Google Scholar]
  3. Cheng Z., Presting G. G., Buell C. R., Wing R. A., Jiang J. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics. 2001 Apr;157(4):1749–1757. doi: 10.1093/genetics/157.4.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Childs K. L., Klein R. R., Klein P. E., Morishige D. T., Mullet J. E. Mapping genes on an integrated sorghum genetic and physical map using cDNA selection technology. Plant J. 2001 Aug;27(3):243–255. doi: 10.1046/j.1365-313x.2001.01085.x. [DOI] [PubMed] [Google Scholar]
  5. Childs K. L., Miller F. R., Cordonnier-Pratt M. M., Pratt L. H., Morgan P. W., Mullet J. E. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol. 1997 Feb;113(2):611–619. doi: 10.1104/pp.113.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faris J. D., Haen K. M., Gill B. S. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics. 2000 Feb;154(2):823–835. doi: 10.1093/genetics/154.2.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fransz P., Armstrong S., Alonso-Blanco C., Fischer T. C., Torres-Ruiz R. A., Jones G. Cytogenetics for the model system Arabidopsis thaliana. Plant J. 1998 Mar;13(6):867–876. doi: 10.1046/j.1365-313x.1998.00086.x. [DOI] [PubMed] [Google Scholar]
  8. Gallagher D. S., Jr, Yang Y. P., Burzlaff J. D., Womack J. E., Stelly D. M., Davis S. K., Taylor J. F. Physical assignment of six type I anchor loci to bovine chromosome 19 by fluorescence in situ hybridization. Anim Genet. 1998 Apr;29(2):130–134. doi: 10.1046/j.1365-2052.1998.00239.x. [DOI] [PubMed] [Google Scholar]
  9. Gómez M. I., Islam-Faridi M. N., Woo S. S., Czeschin D., Jr, Zwick M. S., Stelly D. M., Price H. J., Schertz K. F., Wing R. A. FISH of a maize sh2-selected sorghum BAC to chromosomes of Sorghum bicolor. Genome. 1997 Aug;40(4):475–478. doi: 10.1139/g97-063. [DOI] [PubMed] [Google Scholar]
  10. Hanson R. E., Islam-Faridi M. N., Percival E. A., Crane C. F., Ji Y., McKnight T. D., Stelly D. M., Price H. J. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma. 1996 Jul;105(1):55–61. doi: 10.1007/BF02510039. [DOI] [PubMed] [Google Scholar]
  11. Hanson R. E., Zwick M. S., Choi S., Islam-Faridi M. N., McKnight T. D., Wing R. A., Price H. J., Stelly D. M. Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome. 1995 Aug;38(4):646–651. doi: 10.1139/g95-082. [DOI] [PubMed] [Google Scholar]
  12. Jiang J., Gill B. S., Wang G. L., Ronald P. C., Ward D. C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4487–4491. doi: 10.1073/pnas.92.10.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim Jeong-Soon, Childs Kevin L., Islam-Faridi M. Nurul, Menz Monica A., Klein Robert R., Klein Patricia E., Price H. James, Mullet John E., Stelly David M. Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome. 2002 Apr;45(2):402–412. doi: 10.1139/g01-141. [DOI] [PubMed] [Google Scholar]
  14. Klein P. E., Klein R. R., Cartinhour S. W., Ulanch P. E., Dong J., Obert J. A., Morishige D. T., Schlueter S. D., Childs K. L., Ale M. A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res. 2000 Jun;10(6):789–807. doi: 10.1101/gr.10.6.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Künzel G., Korzun L., Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics. 2000 Jan;154(1):397–412. doi: 10.1093/genetics/154.1.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lin Y. R., Schertz K. F., Paterson A. H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics. 1995 Sep;141(1):391–411. doi: 10.1093/genetics/141.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McClintock B. CHROMOSOME MORPHOLOGY IN ZEA MAYS. Science. 1929 Jun 14;69(1798):629–629. doi: 10.1126/science.69.1798.629. [DOI] [PubMed] [Google Scholar]
  18. Menz M. A., Klein R. R., Mullet J. E., Obert J. A., Unruh N. C., Klein P. E. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol. 2002 Mar-Apr;48(5-6):483–499. doi: 10.1023/a:1014831302392. [DOI] [PubMed] [Google Scholar]
  19. Paterson A. H., Lin Y. R., Li Z., Schertz K. F., Doebley J. F., Pinson S. R., Liu S. C., Stansel J. W., Irvine J. E. Convergent domestication of cereal crops by independent mutations at corresponding genetic Loci. Science. 1995 Sep 22;269(5231):1714–1718. doi: 10.1126/science.269.5231.1714. [DOI] [PubMed] [Google Scholar]
  20. Paterson A. H., Schertz K. F., Lin Y. R., Liu S. C., Chang Y. L. The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6127–6131. doi: 10.1073/pnas.92.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pereira M. G., Lee M., Bramel-Cox P., Woodman W., Doebley J., Whitkus R. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome. 1994 Apr;37(2):236–243. doi: 10.1139/g94-033. [DOI] [PubMed] [Google Scholar]
  22. Peterson D. G., Lapitan N. L., Stack S. M. Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics. 1999 May;152(1):427–439. doi: 10.1093/genetics/152.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sherman J. D., Stack S. M. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics. 1995 Oct;141(2):683–708. doi: 10.1093/genetics/141.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stack S. M. Heterochromatin, the synaptonemal complex and crossing over. J Cell Sci. 1984 Oct;71:159–176. doi: 10.1242/jcs.71.1.159. [DOI] [PubMed] [Google Scholar]
  25. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tao Q., Zhang H. B. Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res. 1998 Nov 1;26(21):4901–4909. doi: 10.1093/nar/26.21.4901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tikhonov A. P., SanMiguel P. J., Nakajima Y., Gorenstein N. M., Bennetzen J. L., Avramova Z. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7409–7414. doi: 10.1073/pnas.96.13.7409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Woo S. S., Jiang J., Gill B. S., Paterson A. H., Wing R. A. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res. 1994 Nov 25;22(23):4922–4931. doi: 10.1093/nar/22.23.4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zwick M. S., Hanson R. E., Islam-Faridi M. N., Stelly D. M., Wing R. A., Price H. J., McKnight T. D. A rapid procedure for the isolation of C0t-1 DNA from plants. Genome. 1997 Feb;40(1):138–142. doi: 10.1139/g97-020. [DOI] [PubMed] [Google Scholar]
  31. Zwick M. S., Islam-Faridi M. N., Czeschin D. G., Jr, Wing R. A., Hart G. E., Stelly D. M., Price H. J. Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics. 1998 Apr;148(4):1983–1992. doi: 10.1093/genetics/148.4.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zwick M. S., Islam-Faridi M. N., Zhang H. B., Hodnett G. L., Gomez M. I., Kim J. S., Price H. J., Stelly D. M. Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of Sorghum bicolor (Poaceae). Am J Bot. 2000 Dec;87(12):1757–1764. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES