Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Oct 15;24(20):4023–4028. doi: 10.1093/nar/24.20.4023

Inappropriate splicing of a chimeric gene containing a large internal exon results in exon skipping in transgenic mice.

R L Davisson 1, N Nuutinen 1, S T Coleman 1, C D Sigmund 1
PMCID: PMC146210  PMID: 8918807

Abstract

We generated transgenic mice containing a chimeric construct consisting of the alpha-cardiac myosin heavy chain (alpha cMHC) promoter and the human renin (hRen) gene in order to target hRen synthesis specifically to the heart. The construct consisted of three segments: (i) an alpha cMHC DNA segment including 4.5 kb of 5' flanking DNA and an additional 1.1 kb of genomic DNA encompassing exons I-III (non-coding) and the first two introns; (ii) a partial hRen cDNA consisting of exons I-VI; and (iii) a hRen genomic segment containing exons VII through IX, their intervening introns, and 400 bp of 3' flanking DNA. This results in the formation of a 909 bp internal fusion exon consisting of alpha cMHC, polylinker, and hRen sequences. Despite the presence of splice acceptor and donor sites bracketing this exon, transcription of this transgene resulted in a major alternatively spliced mRNA lacking the exon and therefore a majority of the hRen coding sequence. Cloning and sequencing of RT-PCR products from several heart samples from two independent transgenic lines confirmed accurate and faithful splicing of alpha cMHC exon II to hRen exon VII thus bypassing the internal fusion exon. All other exons (alpha cMHC exons I and II and hRen exons VII, VIII and IX) were appropriately spliced. These results are consistent with the hypothesis on exon definition which states that internal exons have a size limitation. Moreover, the results demonstrate that transgenes present in the genome at independent insertion sites and in either a single copy or multiple copies can be subject to exon skipping. The implications for transgene design will be discussed.

Full Text

The Full Text of this article is available as a PDF (104.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barash I., Nathan M., Kari R., Ilan N., Shani M., Hurwitz D. R. Elements within the beta-lactoglobulin gene inhibit expression of human serum albumin cDNA and minigenes in transfected cells but rescue their expression in the mammary gland of transgenic mice. Nucleic Acids Res. 1996 Feb 15;24(4):602–610. doi: 10.1093/nar/24.4.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berget S. M. Exon recognition in vertebrate splicing. J Biol Chem. 1995 Feb 10;270(6):2411–2414. doi: 10.1074/jbc.270.6.2411. [DOI] [PubMed] [Google Scholar]
  3. Boulikas T. Homeotic protein binding sites, origins of replication, and nuclear matrix anchorage sites share the ATTA and ATTTA motifs. J Cell Biochem. 1992 Oct;50(2):111–123. doi: 10.1002/jcb.240500202. [DOI] [PubMed] [Google Scholar]
  4. Brinster R. L., Allen J. M., Behringer R. R., Gelinas R. E., Palmiter R. D. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A. 1988 Feb;85(3):836–840. doi: 10.1073/pnas.85.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brooks A. R., Nagy B. P., Taylor S., Simonet W. S., Taylor J. M., Levy-Wilson B. Sequences containing the second-intron enhancer are essential for transcription of the human apolipoprotein B gene in the livers of transgenic mice. Mol Cell Biol. 1994 Apr;14(4):2243–2256. doi: 10.1128/mcb.14.4.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burson J. M., Aguilera G., Gross K. W., Sigmund C. D. Differential expression of angiotensin receptor 1A and 1B in mouse. Am J Physiol. 1994 Aug;267(2 Pt 1):E260–E267. doi: 10.1152/ajpendo.1994.267.2.E260. [DOI] [PubMed] [Google Scholar]
  7. Choi T., Huang M., Gorman C., Jaenisch R. A generic intron increases gene expression in transgenic mice. Mol Cell Biol. 1991 Jun;11(6):3070–3074. doi: 10.1128/mcb.11.6.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Dreyfuss G., Swanson M. S., Piñol-Roma S. Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem Sci. 1988 Mar;13(3):86–91. doi: 10.1016/0968-0004(88)90046-1. [DOI] [PubMed] [Google Scholar]
  10. Gaensler K. M., Kitamura M., Kan Y. W. Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human beta-globin locus in transgenic mice. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11381–11385. doi: 10.1073/pnas.90.23.11381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grosveld F., van Assendelft G. B., Greaves D. R., Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987 Dec 24;51(6):975–985. doi: 10.1016/0092-8674(87)90584-8. [DOI] [PubMed] [Google Scholar]
  12. Hanahan D. Transgenic mice as probes into complex systems. Science. 1989 Dec 8;246(4935):1265–1275. doi: 10.1126/science.2686032. [DOI] [PubMed] [Google Scholar]
  13. Jaenisch R. Transgenic animals. Science. 1988 Jun 10;240(4858):1468–1474. doi: 10.1126/science.3287623. [DOI] [PubMed] [Google Scholar]
  14. Lang J. A., Yang G., Kern J. A., Sigmund C. D. Endogenous human renin expression and promoter activity in CALU-6, a pulmonary carcinoma cell line. Hypertension. 1995 Apr;25(4 Pt 2):704–710. doi: 10.1161/01.hyp.25.4.704. [DOI] [PubMed] [Google Scholar]
  15. Liu K., Sandgren E. P., Palmiter R. D., Stein A. Rat growth hormone gene introns stimulate nucleosome alignment in vitro and in transgenic mice. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7724–7728. doi: 10.1073/pnas.92.17.7724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lozano G., Levine A. J. Tissue-specific expression of p53 in transgenic mice is regulated by intron sequences. Mol Carcinog. 1991;4(1):3–9. doi: 10.1002/mc.2940040103. [DOI] [PubMed] [Google Scholar]
  17. Palmiter R. D., Sandgren E. P., Avarbock M. R., Allen D. D., Brinster R. L. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):478–482. doi: 10.1073/pnas.88.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peterson K. R., Clegg C. H., Huxley C., Josephson B. M., Haugen H. S., Furukawa T., Stamatoyannopoulos G. Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human beta-globin locus display proper developmental control of human globin genes. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7593–7597. doi: 10.1073/pnas.90.16.7593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sigmund C. D. Expression of the human renin gene in transgenic mice throughout ontogeny. Pediatr Nephrol. 1993 Oct;7(5):639–645. doi: 10.1007/BF00852572. [DOI] [PubMed] [Google Scholar]
  20. Sigmund C. D., Jones C. A., Kane C. M., Wu C., Lang J. A., Gross K. W. Regulated tissue- and cell-specific expression of the human renin gene in transgenic mice. Circ Res. 1992 May;70(5):1070–1079. doi: 10.1161/01.res.70.5.1070. [DOI] [PubMed] [Google Scholar]
  21. Sigmund C. D. Major approaches for generating and analyzing transgenic mice. An overview. Hypertension. 1993 Oct;22(4):599–607. doi: 10.1161/01.hyp.22.4.599. [DOI] [PubMed] [Google Scholar]
  22. Sola C., Tronik D., Dreyfus M., Babinet C., Rougeon F. Renin-promoter SV40 large T-antigen transgenes induce tumors irrespective of normal cellular expression of renin genes. Oncogene Res. 1989;5(2):149–153. [PubMed] [Google Scholar]
  23. Subramaniam A., Jones W. K., Gulick J., Wert S., Neumann J., Robbins J. Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J Biol Chem. 1991 Dec 25;266(36):24613–24620. [PubMed] [Google Scholar]
  24. Yang G., Merrill D. C., Thompson M. W., Robillard J. E., Sigmund C. D. Functional expression of the human angiotensinogen gene in transgenic mice. J Biol Chem. 1994 Dec 23;269(51):32497–32502. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES