Abstract
The cosQ site of bacteriophage lambda is required for DNA packaging termination. Previous studies have shown that cosQ mutations can be suppressed in three ways: by a local suppressor within cosQ, an increase in the length of the lambda chromosome, and missense mutations affecting the prohead's portal protein, gpB. In the present work, revertants of a set of lethal cosQ mutants were screened for suppressors. Seven new cosQ suppressors affected gene B, which encodes the portal protein of the prohead. All seven were allele-nonspecific suppressors of cosQ mutations. Experiments with several phages having two cosQ suppressors showed that the suppression effects were additive. Furthermore, these double suppressors had minimal effects on the growth of cosQ(+) phages. These trans-acting suppressors affecting the portal protein are proposed to allow the mutant cosQ site to be more efficiently recognized, due to the slowing of the rate of translocation.
Full Text
The Full Text of this article is available as a PDF (170.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arens J. S., Hang Q., Hwang Y., Tuma B., Max S., Feiss M. Mutations that extend the specificity of the endonuclease activity of lambda terminase. J Bacteriol. 1999 Jan;181(1):218–224. doi: 10.1128/jb.181.1.218-224.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker A., Murialdo H. Bacteriophage lambda DNA: the beginning of the end. J Bacteriol. 1990 Jun;172(6):2819–2824. doi: 10.1128/jb.172.6.2819-2824.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benzer S. ON THE TOPOGRAPHY OF THE GENETIC FINE STRUCTURE. Proc Natl Acad Sci U S A. 1961 Mar;47(3):403–415. doi: 10.1073/pnas.47.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casjens S., Wyckoff E., Hayden M., Sampson L., Eppler K., Randall S., Moreno E. T., Serwer P. Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. J Mol Biol. 1992 Apr 20;224(4):1055–1074. doi: 10.1016/0022-2836(92)90469-z. [DOI] [PubMed] [Google Scholar]
- Catalano C. E., Cue D., Feiss M. Virus DNA packaging: the strategy used by phage lambda. Mol Microbiol. 1995 Jun;16(6):1075–1086. doi: 10.1111/j.1365-2958.1995.tb02333.x. [DOI] [PubMed] [Google Scholar]
- Cue D., Feiss M. Genetic evidence that recognition of cosQ, the signal for termination of phage lambda DNA packaging, depends on the extent of head filling. Genetics. 1997 Sep;147(1):7–17. doi: 10.1093/genetics/147.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cue D., Feiss M. Termination of packaging of the bacteriophage lambda chromosome: cosQ is required for nicking the bottom strand of cosN. J Mol Biol. 1998 Jul 3;280(1):11–29. doi: 10.1006/jmbi.1998.1841. [DOI] [PubMed] [Google Scholar]
- Davidson A. R., Gold M. Mutations abolishing the endonuclease activity of bacteriophage lambda terminase lie in two distinct regions of the A gene, one of which may encode a "leucine zipper" DNA-binding domain. Virology. 1992 Jul;189(1):21–30. doi: 10.1016/0042-6822(92)90677-h. [DOI] [PubMed] [Google Scholar]
- Donate L. E., Valpuesta J. M., Mier C., Rojo F., Carrascosa J. L. Characterization of an RNA-binding domain in the bacteriophage phi 29 connector. J Biol Chem. 1993 Sep 25;268(27):20198–20204. [PubMed] [Google Scholar]
- Donate L. E., Valpuesta J. M., Rocher A., Méndez E., Rojo F., Salas M., Carrascosa J. L. Role of the amino-terminal domain of bacteriophage phi 29 connector in DNA binding and packaging. J Biol Chem. 1992 May 25;267(15):10919–10924. [PubMed] [Google Scholar]
- Emmons S. W. Bacteriophage lambda derivatives carrying two copies of the cohesive end site. J Mol Biol. 1974 Mar 15;83(4):511–525. doi: 10.1016/0022-2836(74)90511-7. [DOI] [PubMed] [Google Scholar]
- Feiss M., Siegele D. A. Packaging of the bacteriophage lambda chromosome: dependence of cos cleavage on chromosome length. Virology. 1979 Jan 15;92(1):190–200. doi: 10.1016/0042-6822(79)90224-1. [DOI] [PubMed] [Google Scholar]
- Feiss M., Sippy J., Miller G. Processive action of terminase during sequential packaging of bacteriophage lambda chromosomes. J Mol Biol. 1985 Dec 20;186(4):759–771. doi: 10.1016/0022-2836(85)90395-x. [DOI] [PubMed] [Google Scholar]
- Fowler R. G., Degnen G. E., Cox E. C. Mutational specificity of a conditional Escherichia coli mutator, mutD5. Mol Gen Genet. 1974;133(3):179–191. doi: 10.1007/BF00267667. [DOI] [PubMed] [Google Scholar]
- Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
- Hendrix R. W., Smith M. C., Burns R. N., Ford M. E., Hatfull G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2192–2197. doi: 10.1073/pnas.96.5.2192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herranz L., Bordas J., Towns-Andrews E., Mendez E., Usobiaga P., Carrascosa J. L. Conformational changes in bacteriophage phi 29 connector prevents DNA-binding activity. J Mol Biol. 1990 May 20;213(2):263–273. doi: 10.1016/s0022-2836(05)80189-5. [DOI] [PubMed] [Google Scholar]
- Herranz L., Salas M., Carrascosa J. L. Interaction of the bacteriophage phi 29 connector protein with the viral DNA. Virology. 1986 Nov;155(1):289–292. doi: 10.1016/0042-6822(86)90191-1. [DOI] [PubMed] [Google Scholar]
- Hohn B. DNA as substrate for packaging into bacteriophage lambda, in vitro. J Mol Biol. 1975 Oct 15;98(1):93–106. doi: 10.1016/s0022-2836(75)80103-3. [DOI] [PubMed] [Google Scholar]
- Hwang Y., Feiss M. Mutations affecting the high affinity ATPase center of gpA, the large subunit of bacteriophage lambda terminase, inactivate the endonuclease activity of terminase. J Mol Biol. 1996 Aug 30;261(4):524–535. doi: 10.1006/jmbi.1996.0480. [DOI] [PubMed] [Google Scholar]
- Kochan J., Carrascosa J. L., Murialdo H. Bacteriophage lambda preconnectors. Purification and structure. J Mol Biol. 1984 Apr 15;174(3):433–447. doi: 10.1016/0022-2836(84)90330-9. [DOI] [PubMed] [Google Scholar]
- Kochan J., Murialdo H. Early intermediates in bacteriophage lambda prohead assembly. II. Identification of biologically active intermediates. Virology. 1983 Nov;131(1):100–115. doi: 10.1016/0042-6822(83)90537-8. [DOI] [PubMed] [Google Scholar]
- Kosturko L. D., Daub E., Murialdo H. The interaction of E. coli integration host factor and lambda cos DNA: multiple complex formation and protein-induced bending. Nucleic Acids Res. 1989 Jan 11;17(1):317–334. doi: 10.1093/nar/17.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelson I., Gottesman M., Oppenheim A. B. HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase. J Bacteriol. 1991 Mar;173(5):1670–1676. doi: 10.1128/jb.173.5.1670-1676.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orlova E. V., Dube P., Beckmann E., Zemlin F., Lurz R., Trautner T. A., Tavares P., van Heel M. Structure of the 13-fold symmetric portal protein of bacteriophage SPP1. Nat Struct Biol. 1999 Sep;6(9):842–846. doi: 10.1038/12303. [DOI] [PubMed] [Google Scholar]
- Richards F. M. The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol. 1974 Jan 5;82(1):1–14. doi: 10.1016/0022-2836(74)90570-1. [DOI] [PubMed] [Google Scholar]
- Rubinchik S., Parris W., Gold M. The in vitro endonuclease activity of gene product A, the large subunit of the bacteriophage lambda terminase, and its relationship to the endonuclease activity of the holoenzyme. J Biol Chem. 1994 May 6;269(18):13575–13585. [PubMed] [Google Scholar]
- Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B. Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol. 1982 Dec 25;162(4):729–773. doi: 10.1016/0022-2836(82)90546-0. [DOI] [PubMed] [Google Scholar]
- Shinder G., Gold M. The Nul subunit of bacteriophage lambda terminase binds to specific sites in cos DNA. J Virol. 1988 Feb;62(2):387–392. doi: 10.1128/jvi.62.2.387-392.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Six E. W., Klug C. A. Bacteriophage P4: a satellite virus depending on a helper such as prophage P2. Virology. 1973 Feb;51(2):327–344. doi: 10.1016/0042-6822(73)90432-7. [DOI] [PubMed] [Google Scholar]
- Smith D. E., Tans S. J., Smith S. B., Grimes S., Anderson D. L., Bustamante C. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature. 2001 Oct 18;413(6857):748–752. doi: 10.1038/35099581. [DOI] [PubMed] [Google Scholar]
- Sternberg N., Austin S. Isolation and characterization of P1 minireplicons, lambda-P1:5R and lambda-P1:5L. J Bacteriol. 1983 Feb;153(2):800–812. doi: 10.1128/jb.153.2.800-812.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tavares P., Santos M. A., Lurz R., Morelli G., de Lencastre H., Trautner T. A. Identification of a gene in Bacillus subtilis bacteriophage SPP1 determining the amount of packaged DNA. J Mol Biol. 1992 May 5;225(1):81–92. doi: 10.1016/0022-2836(92)91027-m. [DOI] [PubMed] [Google Scholar]
- Tsui L., Hendrix R. W. Head-tail connector of bacteriophage lambda. J Mol Biol. 1980 Sep 25;142(3):419–438. doi: 10.1016/0022-2836(80)90280-6. [DOI] [PubMed] [Google Scholar]
- Turnquist S., Simon M., Egelman E., Anderson D. Supercoiled DNA wraps around the bacteriophage phi 29 head-tail connector. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10479–10483. doi: 10.1073/pnas.89.21.10479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valle M., Kremer L., Martínez-A C., Roncal F., Valpuesta J. M., Albar J. P., Carrascosa J. L. Domain architecture of the bacteriophage phi29 connector protein. J Mol Biol. 1999 May 21;288(5):899–909. doi: 10.1006/jmbi.1999.2731. [DOI] [PubMed] [Google Scholar]
- Valle M., Valpuesta J. M., Carrascosa J. L., Tamayo J., Garcia R. The interaction of DNA with bacteriophage phi 29 connector: a study by AFM and TEM. J Struct Biol. 1996 May-Jun;116(3):390–398. doi: 10.1006/jsbi.1996.0056. [DOI] [PubMed] [Google Scholar]
- Valpuesta J. M., Carrascosa J. L. Structure of viral connectors and their function in bacteriophage assembly and DNA packaging. Q Rev Biophys. 1994 May;27(2):107–155. doi: 10.1017/s0033583500004510. [DOI] [PubMed] [Google Scholar]
- Valpuesta J. M., Serrano M., Donate L. E., Herranz L., Carrascosa J. L. DNA conformational change induced by the bacteriophage phi 29 connector. Nucleic Acids Res. 1992 Nov 11;20(21):5549–5554. doi: 10.1093/nar/20.21.5549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. E., Auffret A. D., Carne A., Gurnett A., Hanisch P., Hill D., Saraste M. Solid-phase sequence analysis of polypeptides eluted from polyacrylamide gels. An aid to interpretation of DNA sequences exemplified by the Escherichia coli unc operon and bacteriophage lambda. Eur J Biochem. 1982 Apr 1;123(2):253–260. doi: 10.1111/j.1432-1033.1982.tb19761.x. [DOI] [PubMed] [Google Scholar]
- Wieczorek D. J., Feiss M. Defining cosQ, the site required for termination of bacteriophage lambda DNA packaging. Genetics. 2001 Jun;158(2):495–506. doi: 10.1093/genetics/158.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xin W., Cai Z. H., Feiss M. Function of IHF in lambda DNA packaging. II. Effects of mutations altering the IHF binding site and the intrinsic bend in cosB on lambda development. J Mol Biol. 1993 Mar 20;230(2):505–515. doi: 10.1006/jmbi.1993.1167. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Yeo A., Feiss M. Mutational analysis of the prohead binding domain of the large subunit of terminase, the bacteriophage lambda DNA packaging enzyme. J Mol Biol. 1995 Jan 13;245(2):126–140. [PubMed] [Google Scholar]
- Yeo A., Feiss M. Specific interaction of terminase, the DNA packaging enzyme of bacteriophage lambda, with the portal protein of the prohead. J Mol Biol. 1995 Jan 13;245(2):141–150. doi: 10.1006/jmbi.1994.0013. [DOI] [PubMed] [Google Scholar]