Skip to main content
Genetics logoLink to Genetics
. 2002 May;161(1):47–57. doi: 10.1093/genetics/161.1.47

The mcm5-bob1 bypass of Cdc7p/Dbf4p in DNA replication depends on both Cdk1-independent and Cdk1-dependent steps in Saccharomyces cerevisiae.

Robert A Sclafani 1, Marianne Tecklenburg 1, Angela Pierce 1
PMCID: PMC1462111  PMID: 12019222

Abstract

The roles in DNA replication of two distinct protein kinases, Cdc7p/Dbf4p and Cdk1p/Clb (B-type cyclin), were studied. This was accomplished through a genetic and molecular analysis of the mechanism by which the mcm5-bob1 mutation bypasses the function of the Cdc7p/Dbf4p kinase. Genetic experiments revealed that loss of either Clb5p or Clb2p cyclins suppresses the mcm5-bob1 mutation and prevents bypass. These two cyclins have distinct roles in bypass and presumably in DNA replication as overexpression of one could not complement the loss of the other. Furthermore, the ectopic expression of CLB2 in G1 phase cannot substitute for CLB5 function in bypass of Cdc7p/Dbf4p by mcm5-bob1. Molecular experiments revealed that the mcm5-bob1 mutation allows for constitutive loading of Cdc45p at early origins in arrested G1 phase cells when both kinases are inactive. A model is proposed in which the Mcm5-bob1 protein assumes a unique molecular conformation without prior action by either kinase. This conformation allows for stable binding of Cdc45p to the origin. However, DNA replication still cannot occur without the combined action of Cdk1p/Clb5p and Cdk1p/Clb2p. Thus Cdc7p and Cdk1p kinases catalyze the initiation of DNA replication at several distinct steps, of which only a subset is bypassed by the mcm5-bob1 mutation.

Full Text

The Full Text of this article is available as a PDF (159.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Cao L., Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. doi: 10.1534/genetics.112.541.test. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aparicio O. M., Stout A. M., Bell S. P. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9130–9135. doi: 10.1073/pnas.96.16.9130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basco R. D., Segal M. D., Reed S. I. Negative regulation of G1 and G2 by S-phase cyclins of Saccharomyces cerevisiae. Mol Cell Biol. 1995 Sep;15(9):5030–5042. doi: 10.1128/mcb.15.9.5030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bousset K., Diffley J. F. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 1998 Feb 15;12(4):480–490. doi: 10.1101/gad.12.4.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng L., Collyer T., Hardy C. F. Cell cycle regulation of DNA replication initiator factor Dbf4p. Mol Cell Biol. 1999 Jun;19(6):4270–4278. doi: 10.1128/mcb.19.6.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cross F. R., Yuste-Rojas M., Gray S., Jacobson M. D. Specialization and targeting of B-type cyclins. Mol Cell. 1999 Jul;4(1):11–19. doi: 10.1016/s1097-2765(00)80183-5. [DOI] [PubMed] [Google Scholar]
  7. Donaldson A. D., Fangman W. L., Brewer B. J. Cdc7 is required throughout the yeast S phase to activate replication origins. Genes Dev. 1998 Feb 15;12(4):491–501. doi: 10.1101/gad.12.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donaldson A. D., Raghuraman M. K., Friedman K. L., Cross F. R., Brewer B. J., Fangman W. L. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol Cell. 1998 Aug;2(2):173–182. doi: 10.1016/s1097-2765(00)80127-6. [DOI] [PubMed] [Google Scholar]
  9. Donaldson A. D. The yeast mitotic cyclin Clb2 cannot substitute for S phase cyclins in replication origin firing. EMBO Rep. 2000 Dec;1(6):507–512. doi: 10.1093/embo-reports/kvd108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Epstein C. B., Cross F. R. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 1992 Sep;6(9):1695–1706. doi: 10.1101/gad.6.9.1695. [DOI] [PubMed] [Google Scholar]
  11. Ferreira M. F., Santocanale C., Drury L. S., Diffley J. F. Dbf4p, an essential S phase-promoting factor, is targeted for degradation by the anaphase-promoting complex. Mol Cell Biol. 2000 Jan;20(1):242–248. doi: 10.1128/mcb.20.1.242-248.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fitch I., Dahmann C., Surana U., Amon A., Nasmyth K., Goetsch L., Byers B., Futcher B. Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell. 1992 Jul;3(7):805–818. doi: 10.1091/mbc.3.7.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geraghty D. S., Ding M., Heintz N. H., Pederson D. S. Premature structural changes at replication origins in a yeast minichromosome maintenance (MCM) mutant. J Biol Chem. 2000 Jun 16;275(24):18011–18021. doi: 10.1074/jbc.M909787199. [DOI] [PubMed] [Google Scholar]
  14. Ghiara J. B., Richardson H. E., Sugimoto K., Henze M., Lew D. J., Wittenberg C., Reed S. I. A cyclin B homolog in S. cerevisiae: chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell. 1991 Apr 5;65(1):163–174. doi: 10.1016/0092-8674(91)90417-w. [DOI] [PubMed] [Google Scholar]
  15. Ha S. K., Seo J. K., Lee S. Y., Lee C. K., Lee J. I., Kim S. J., Park C. H., Kim D. H. Successful use of cytology brush in the treatment of relapsing CAPD peritonitis. Nephrol Dial Transplant. 1997 Sep;12(9):1997–1999. doi: 10.1093/ndt/12.9.1997. [DOI] [PubMed] [Google Scholar]
  16. Haase S. B., Reed S. I. Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle. Nature. 1999 Sep 23;401(6751):394–397. doi: 10.1038/43927. [DOI] [PubMed] [Google Scholar]
  17. Hardy C. F., Dryga O., Seematter S., Pahl P. M., Sclafani R. A. mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3151–3155. doi: 10.1073/pnas.94.7.3151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hartwell L. H., Mortimer R. K., Culotti J., Culotti M. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics. 1973 Jun;74(2):267–286. doi: 10.1093/genetics/74.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holm C., Meeks-Wagner D. W., Fangman W. L., Botstein D. A rapid, efficient method for isolating DNA from yeast. Gene. 1986;42(2):169–173. doi: 10.1016/0378-1119(86)90293-3. [DOI] [PubMed] [Google Scholar]
  21. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jackson A. L., Pahl P. M., Harrison K., Rosamond J., Sclafani R. A. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol Cell Biol. 1993 May;13(5):2899–2908. doi: 10.1128/mcb.13.5.2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jares P., Blow J. J. Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev. 2000 Jun 15;14(12):1528–1540. [PMC free article] [PubMed] [Google Scholar]
  24. Jares P., Donaldson A., Blow J. J. The Cdc7/Dbf4 protein kinase: target of the S phase checkpoint? EMBO Rep. 2000 Oct;1(4):319–322. doi: 10.1093/embo-reports/kvd076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kearsey S. E., Labib K. MCM proteins: evolution, properties, and role in DNA replication. Biochim Biophys Acta. 1998 Jun 16;1398(2):113–136. doi: 10.1016/s0167-4781(98)00033-5. [DOI] [PubMed] [Google Scholar]
  26. Kelly T. J., Brown G. W. Regulation of chromosome replication. Annu Rev Biochem. 2000;69:829–880. doi: 10.1146/annurev.biochem.69.1.829. [DOI] [PubMed] [Google Scholar]
  27. Labib K., Diffley J. F. Is the MCM2-7 complex the eukaryotic DNA replication fork helicase? Curr Opin Genet Dev. 2001 Feb;11(1):64–70. doi: 10.1016/s0959-437x(00)00158-1. [DOI] [PubMed] [Google Scholar]
  28. Lei M., Tye B. K. Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci. 2001 Apr;114(Pt 8):1447–1454. doi: 10.1242/jcs.114.8.1447. [DOI] [PubMed] [Google Scholar]
  29. Megee P. C., Mistrot C., Guacci V., Koshland D. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol Cell. 1999 Sep;4(3):445–450. doi: 10.1016/s1097-2765(00)80347-0. [DOI] [PubMed] [Google Scholar]
  30. Meluh P. B., Koshland D. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev. 1997 Dec 15;11(24):3401–3412. doi: 10.1101/gad.11.24.3401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mimura S., Takisawa H. Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. EMBO J. 1998 Oct 1;17(19):5699–5707. doi: 10.1093/emboj/17.19.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nguyen V. Q., Co C., Li J. J. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature. 2001 Jun 28;411(6841):1068–1073. doi: 10.1038/35082600. [DOI] [PubMed] [Google Scholar]
  33. Nougarède R., Della Seta F., Zarzov P., Schwob E. Hierarchy of S-phase-promoting factors: yeast Dbf4-Cdc7 kinase requires prior S-phase cyclin-dependent kinase activation. Mol Cell Biol. 2000 Jun;20(11):3795–3806. doi: 10.1128/mcb.20.11.3795-3806.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Owens J. C., Detweiler C. S., Li J. J. CDC45 is required in conjunction with CDC7/DBF4 to trigger the initiation of DNA replication. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12521–12526. doi: 10.1073/pnas.94.23.12521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schwob E., Böhm T., Mendenhall M. D., Nasmyth K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell. 1994 Oct 21;79(2):233–244. doi: 10.1016/0092-8674(94)90193-7. [DOI] [PubMed] [Google Scholar]
  36. Schwob E., Nasmyth K. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 1993 Jul;7(7A):1160–1175. doi: 10.1101/gad.7.7a.1160. [DOI] [PubMed] [Google Scholar]
  37. Sclafani R. A. Cdc7p-Dbf4p becomes famous in the cell cycle. J Cell Sci. 2000 Jun;113(Pt 12):2111–2117. doi: 10.1242/jcs.113.12.2111. [DOI] [PubMed] [Google Scholar]
  38. Sclafani R. A., Patterson M., Rosamond J., Fangman W. L. Differential regulation of the yeast CDC7 gene during mitosis and meiosis. Mol Cell Biol. 1988 Jan;8(1):293–300. doi: 10.1128/mcb.8.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shellman Y. G., Svee E., Sclafani R. A., Langan T. A. Identification and characterization of individual cyclin-dependent kinase complexes from Saccharomyces cerevisiae. Yeast. 1999 Mar 15;15(4):295–309. doi: 10.1002/(SICI)1097-0061(19990315)15:4<295::AID-YEA377>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  40. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spellman P. T., Sherlock G., Zhang M. Q., Iyer V. R., Anders K., Eisen M. B., Brown P. O., Botstein D., Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998 Dec;9(12):3273–3297. doi: 10.1091/mbc.9.12.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Surana U., Robitsch H., Price C., Schuster T., Fitch I., Futcher A. B., Nasmyth K. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell. 1991 Apr 5;65(1):145–161. doi: 10.1016/0092-8674(91)90416-v. [DOI] [PubMed] [Google Scholar]
  43. Verma R., Feldman R. M., Deshaies R. J. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol Biol Cell. 1997 Aug;8(8):1427–1437. doi: 10.1091/mbc.8.8.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Walter J. C. Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J Biol Chem. 2000 Dec 15;275(50):39773–39778. doi: 10.1074/jbc.M008107200. [DOI] [PubMed] [Google Scholar]
  45. Walter J., Newport J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell. 2000 Apr;5(4):617–627. doi: 10.1016/s1097-2765(00)80241-5. [DOI] [PubMed] [Google Scholar]
  46. Weinreich M., Stillman B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 1999 Oct 1;18(19):5334–5346. doi: 10.1093/emboj/18.19.5334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zou L., Stillman B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol. 2000 May;20(9):3086–3096. doi: 10.1128/mcb.20.9.3086-3096.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zou L., Stillman B. Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science. 1998 Apr 24;280(5363):593–596. doi: 10.1126/science.280.5363.593. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES