Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Oct 15;24(20):3934–3941. doi: 10.1093/nar/24.20.3934

Molecular cloning of a Plasmodium falciparum gene interrupted by 15 introns encoding a functional primase 53 kDa subunit as demonstrated by expression in a baculovirus system.

S Prasartkaew 1, N M Zijlstra 1, P Wilairat 1, J P Overdulve 1, E de Vries 1
PMCID: PMC146213  PMID: 8918794

Abstract

The gene encoding the primase small subunit was isolated from genomic DNA of strain K1 of the human malarial parasite Plasmodium falciparum. Isolation of a complete cDNA clone revealed the presence of 15 introns in the genomic sequence. This is unprecedented for Plasmodium genes, which usually contain no or only 1 or 2 introns. The gene is present as a single copy and the cDNA contains an open reading frame of 1356 nt encoding a protein of 452 amino acids. A single mRNA of 2.1 kb was identified by Northern blotting. Comparison of the amino acid sequence with five eukaryotic small primase subunits revealed the presence of eight conserved regions. Sequence alignments allowed the identification of putative motifs A, B and C that are essential features of the catalytic centre of DNA polymerases, RNA polymerases and reverse transcriptases. Also, similarity of a C-terminal region of approximately 100 amino acids to a conserved region in herpes virus primases, alpha-like DNA polymerases and RNA polymerase II was noted. The complete gene was expressed as a fusion product containing an N-terminal polyhistidine tag using a baculovirus expression vector. The protein was overproduced in insect cells and purified. Activity assays demonstrated the ability of the p53 subunit to initiate de novo primer formation.

Full Text

The Full Text of this article is available as a PDF (357.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki H., Ropp P. A., Johnson A. L., Johnston L. H., Morrison A., Sugino A. DNA polymerase II, the probable homolog of mammalian DNA polymerase epsilon, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae. EMBO J. 1992 Feb;11(2):733–740. doi: 10.1002/j.1460-2075.1992.tb05106.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Argos P. A sequence motif in many polymerases. Nucleic Acids Res. 1988 Nov 11;16(21):9909–9916. doi: 10.1093/nar/16.21.9909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bakkenist C. J., Cotterill S. The 50-kDa primase subunit of Drosophila melanogaster DNA polymerase alpha. Molecular characterization of the gene and functional analysis of the overexpressed protein. J Biol Chem. 1994 Oct 28;269(43):26759–26766. [PubMed] [Google Scholar]
  4. Bakkenist C. J., Cotterill S. The 50-kDa primase subunit of Drosophila melanogaster DNA polymerase alpha. Molecular characterization of the gene and functional analysis of the overexpressed protein. J Biol Chem. 1994 Oct 28;269(43):26759–26766. [PubMed] [Google Scholar]
  5. Beese L. S., Derbyshire V., Steitz T. A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science. 1993 Apr 16;260(5106):352–355. doi: 10.1126/science.8469987. [DOI] [PubMed] [Google Scholar]
  6. Beese L. S., Friedman J. M., Steitz T. A. Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry. 1993 Dec 28;32(51):14095–14101. doi: 10.1021/bi00214a004. [DOI] [PubMed] [Google Scholar]
  7. Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Budd M. E., Campbell J. L. DNA polymerases delta and epsilon are required for chromosomal replication in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Jan;13(1):496–505. doi: 10.1128/mcb.13.1.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Catapano C. V., Perrino F. W., Fernandes D. J. Primer RNA chain termination induced by 9-beta-D-arabinofuranosyl-2-fluoroadenine 5'-triphosphate. A mechanism of DNA synthesis inhibition. J Biol Chem. 1993 Apr 5;268(10):7179–7185. [PubMed] [Google Scholar]
  10. Chang L. M., Rafter E., Augl C., Bollum F. J. Purification of a DNA polymerase-DNA primase complex from calf thymus glands. J Biol Chem. 1984 Dec 10;259(23):14679–14687. [PubMed] [Google Scholar]
  11. Chavalitshewinkoon P., de Vries E., Stam J. G., Franssen F. F., van der Vliet P. C., Overdulve J. P. Purification and characterization of DNA polymerases from Plasmodium falciparum. Mol Biochem Parasitol. 1993 Oct;61(2):243–253. doi: 10.1016/0166-6851(93)90070-e. [DOI] [PubMed] [Google Scholar]
  12. Copeland W. C., Tan X. Active site mapping of the catalytic mouse primase subunit by alanine scanning mutagenesis. J Biol Chem. 1995 Feb 24;270(8):3905–3913. doi: 10.1074/jbc.270.8.3905. [DOI] [PubMed] [Google Scholar]
  13. Copeland W. C., Wang T. S. Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication. J Biol Chem. 1993 Dec 15;268(35):26179–26189. [PubMed] [Google Scholar]
  14. Copeland W. C., Wang T. S. Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication. J Biol Chem. 1993 Dec 15;268(35):26179–26189. [PubMed] [Google Scholar]
  15. Cullmann G., Hindges R., Berchtold M. W., Hübscher U. Cloning of a mouse cDNA encoding DNA polymerase delta: refinement of the homology boxes. Gene. 1993 Dec 8;134(2):191–200. doi: 10.1016/0378-1119(93)90093-i. [DOI] [PubMed] [Google Scholar]
  16. Delarue M., Poch O., Tordo N., Moras D., Argos P. An attempt to unify the structure of polymerases. Protein Eng. 1990 May;3(6):461–467. doi: 10.1093/protein/3.6.461. [DOI] [PubMed] [Google Scholar]
  17. Digard P., Bebrin W. R., Weisshart K., Coen D. M. The extreme C terminus of herpes simplex virus DNA polymerase is crucial for functional interaction with processivity factor UL42 and for viral replication. J Virol. 1993 Jan;67(1):398–406. doi: 10.1128/jvi.67.1.398-406.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fairlamb A. H., Warhurst D. C., Peters W. An improved technique for the cultivation of Plasmodium falciparum in vitro without daily medium change. Ann Trop Med Parasitol. 1985 Aug;79(4):379–384. doi: 10.1080/00034983.1985.11811935. [DOI] [PubMed] [Google Scholar]
  19. Francesconi S., Longhese M. P., Piseri A., Santocanale C., Lucchini G., Plevani P. Mutations in conserved yeast DNA primase domains impair DNA replication in vivo. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3877–3881. doi: 10.1073/pnas.88.9.3877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ilsley D. D., Lee S. H., Miller W. H., Kuchta R. D. Acyclic guanosine analogs inhibit DNA polymerases alpha, delta, and epsilon with very different potencies and have unique mechanisms of action. Biochemistry. 1995 Feb 28;34(8):2504–2510. doi: 10.1021/bi00008a014. [DOI] [PubMed] [Google Scholar]
  21. Ilyina T. V., Gorbalenya A. E., Koonin E. V. Organization and evolution of bacterial and bacteriophage primase-helicase systems. J Mol Evol. 1992 Apr;34(4):351–357. doi: 10.1007/BF00160243. [DOI] [PubMed] [Google Scholar]
  22. Izumi M., Miyazawa H., Harakawa S., Yatagai F., Hanaoka F. Identification of a point mutation in the cDNA of the catalytic subunit of DNA polymerase alpha from a temperature-sensitive mouse FM3A cell line. J Biol Chem. 1994 Mar 11;269(10):7639–7644. [PubMed] [Google Scholar]
  23. Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. doi: 10.1146/annurev.bi.63.070194.004021. [DOI] [PubMed] [Google Scholar]
  24. Kitani T., Yoda K., Okazaki T. Discontinuous DNA replication of Drosophila melanogaster is primed by octaribonucleotide primer. Mol Cell Biol. 1984 Aug;4(8):1591–1596. doi: 10.1128/mcb.4.8.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klinedinst D. K., Challberg M. D. Helicase-primase complex of herpes simplex virus type 1: a mutation in the UL52 subunit abolishes primase activity. J Virol. 1994 Jun;68(6):3693–3701. doi: 10.1128/jvi.68.6.3693-3701.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Knapp B., Nau U., Hundt E., Küpper H. A. Demonstration of alternative splicing of a pre-mRNA expressed in the blood stage form of Plasmodium falciparum. J Biol Chem. 1991 Apr 15;266(11):7148–7154. [PubMed] [Google Scholar]
  27. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
  28. Kuchta R. D., Reid B., Chang L. M. DNA primase. Processivity and the primase to polymerase alpha activity switch. J Biol Chem. 1990 Sep 25;265(27):16158–16165. [PubMed] [Google Scholar]
  29. Kuchta R. D., Willhelm L. Inhibition of DNA primase by 9-beta-D-arabinofuranosyladenosine triphosphate. Biochemistry. 1991 Jan 22;30(3):797–803. doi: 10.1021/bi00217a033. [DOI] [PubMed] [Google Scholar]
  30. Lanzer M., Wertheimer S. P., de Bruin D., Ravetch J. V. Plasmodium: control of gene expression in malaria parasites. Exp Parasitol. 1993 Aug;77(1):121–128. doi: 10.1006/expr.1993.1068. [DOI] [PubMed] [Google Scholar]
  31. Lehman I. R., Kaguni L. S. DNA polymerase alpha. J Biol Chem. 1989 Mar 15;264(8):4265–4268. [PubMed] [Google Scholar]
  32. McGeoch D. J., Dalrymple M. A., Dolan A., McNab D., Perry L. J., Taylor P., Challberg M. D. Structures of herpes simplex virus type 1 genes required for replication of virus DNA. J Virol. 1988 Feb;62(2):444–453. doi: 10.1128/jvi.62.2.444-453.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Müller M., Schnitzler P., Koonin E. V., Darai G. Identification and properties of the largest subunit of the DNA-dependent RNA polymerase of fish lymphocystis disease virus: dramatic difference in the domain organization in the family Iridoviridae. J Gen Virol. 1995 May;76(Pt 5):1099–1107. doi: 10.1099/0022-1317-76-5-1099. [DOI] [PubMed] [Google Scholar]
  34. Nickel W., Austermann S., Bialek G., Grosse F. Interactions of azidothymidine triphosphate with the cellular DNA polymerases alpha, delta, and epsilon and with DNA primase. J Biol Chem. 1992 Jan 15;267(2):848–854. [PubMed] [Google Scholar]
  35. Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. 1985 Feb 28-Mar 6Nature. 313(6005):762–766. doi: 10.1038/313762a0. [DOI] [PubMed] [Google Scholar]
  36. Plevani P., Francesconi S., Lucchini G. The nucleotide sequence of the PRI1 gene related to DNA primase in Saccharomyces cerevisiae. Nucleic Acids Res. 1987 Oct 12;15(19):7975–7989. doi: 10.1093/nar/15.19.7975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Poch O., Sauvaget I., Delarue M., Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 1989 Dec 1;8(12):3867–3874. doi: 10.1002/j.1460-2075.1989.tb08565.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Prussak C. E., Almazan M. T., Tseng B. Y. Mouse primase p49 subunit molecular cloning indicates conserved and divergent regions. J Biol Chem. 1989 Mar 25;264(9):4957–4963. [PubMed] [Google Scholar]
  39. Santocanale C., Foiani M., Lucchini G., Plevani P. The isolated 48,000-dalton subunit of yeast DNA primase is sufficient for RNA primer synthesis. J Biol Chem. 1993 Jan 15;268(2):1343–1348. [PubMed] [Google Scholar]
  40. Santocanale C., Foiani M., Lucchini G., Plevani P. The isolated 48,000-dalton subunit of yeast DNA primase is sufficient for RNA primer synthesis. J Biol Chem. 1993 Jan 15;268(2):1343–1348. [PubMed] [Google Scholar]
  41. Smeijsters L. J., Zijlstra N. M., de Vries E., Franssen F. F., Janse C. J., Overdulve J. P. The effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl) adenine on nuclear and organellar DNA synthesis in erythrocytic schizogony in malaria. Mol Biochem Parasitol. 1994 Sep;67(1):115–124. doi: 10.1016/0166-6851(94)90101-5. [DOI] [PubMed] [Google Scholar]
  42. Sousa R., Chung Y. J., Rose J. P., Wang B. C. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature. 1993 Aug 12;364(6438):593–599. doi: 10.1038/364593a0. [DOI] [PubMed] [Google Scholar]
  43. Stadlbauer F., Brueckner A., Rehfuess C., Eckerskorn C., Lottspeich F., Förster V., Tseng B. Y., Nasheuer H. P. DNA replication in vitro by recombinant DNA-polymerase-alpha-primase. Eur J Biochem. 1994 Jun 15;222(3):781–793. doi: 10.1111/j.1432-1033.1994.tb18925.x. [DOI] [PubMed] [Google Scholar]
  44. Stadlbauer F., Brueckner A., Rehfuess C., Eckerskorn C., Lottspeich F., Förster V., Tseng B. Y., Nasheuer H. P. DNA replication in vitro by recombinant DNA-polymerase-alpha-primase. Eur J Biochem. 1994 Jun 15;222(3):781–793. doi: 10.1111/j.1432-1033.1994.tb18925.x. [DOI] [PubMed] [Google Scholar]
  45. Steitz T. A., Smerdon S. J., Jäger J., Joyce C. M. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science. 1994 Dec 23;266(5193):2022–2025. doi: 10.1126/science.7528445. [DOI] [PubMed] [Google Scholar]
  46. Thaithong S., Beale G. H. Resistance of ten Thai isolates of Plasmodium falciparum to chloroquine and pyrimethamine by in vitro tests. Trans R Soc Trop Med Hyg. 1981;75(2):271–273. doi: 10.1016/0035-9203(81)90333-3. [DOI] [PubMed] [Google Scholar]
  47. Vinkenoog R., Veldhuisen B., Sperança M. A., del Portillo H. A., Janse C., Waters A. P. Comparison of introns in a cdc2-homologous gene within a number of Plasmodium species. Mol Biochem Parasitol. 1995 May;71(2):233–241. doi: 10.1016/0166-6851(95)00046-4. [DOI] [PubMed] [Google Scholar]
  48. Wang T. S. Eukaryotic DNA polymerases. Annu Rev Biochem. 1991;60:513–552. doi: 10.1146/annurev.bi.60.070191.002501. [DOI] [PubMed] [Google Scholar]
  49. Weber J. L. Analysis of sequences from the extremely A + T-rich genome of Plasmodium falciparum. Gene. 1987;52(1):103–109. doi: 10.1016/0378-1119(87)90399-4. [DOI] [PubMed] [Google Scholar]
  50. Weisshart K., Kuo A. A., Hwang C. B., Kumura K., Coen D. M. Structural and functional organization of herpes simplex virus DNA polymerase investigated by limited proteolysis. J Biol Chem. 1994 Sep 9;269(36):22788–22796. [PubMed] [Google Scholar]
  51. White J. H., Kilbey B. J. DNA replication in the malaria parasite. Parasitol Today. 1996 Apr;12(4):151–155. doi: 10.1016/0169-4758(96)10005-3. [DOI] [PubMed] [Google Scholar]
  52. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
  53. Wong S. W., Paborsky L. R., Fisher P. A., Wang T. S., Korn D. Structural and enzymological characterization of immunoaffinity-purified DNA polymerase alpha.DNA primase complex from KB cells. J Biol Chem. 1986 Jun 15;261(17):7958–7968. [PubMed] [Google Scholar]
  54. Wong S. W., Wahl A. F., Yuan P. M., Arai N., Pearson B. E., Arai K., Korn D., Hunkapiller M. W., Wang T. S. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 1988 Jan;7(1):37–47. doi: 10.1002/j.1460-2075.1988.tb02781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. de Vries E., Stam J. G., Franssen F. F., Nieuwenhuijs H., Chavalitshewinkoon P., de Clercq E., Overdulve J. P., van der Vliet P. C. Inhibition of the growth of Plasmodium falciparum and Plasmodium berghei by the DNA polymerase inhibitor HPMPA. Mol Biochem Parasitol. 1991 Jul;47(1):43–50. doi: 10.1016/0166-6851(91)90146-w. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES