Abstract
A simple two-locus gene conversion model is considered to investigate the amounts of DNA variation and linkage disequilibrium in small multigene families. The exact solutions for the expectations and variances of the amounts of variation within and between two loci are obtained. It is shown that gene conversion increases the amount of variation within each locus and decreases the amount of variation between two loci. The expectation and variance of the amount of linkage disequilibrium are also obtained. Gene conversion generates positive linkage disequilibrium and the degree of linkage disequilibrium decreases as the recombination rate is increased. Using the theoretical results, a method for estimating the mutation, gene conversion, and recombination parameters is developed and applied to the data of the Amy multigene family in Drosophila melanogaster. The gene conversion rate is estimated to be approximately 60-165 times higher than the mutation rate for synonymous sites.
Full Text
The Full Text of this article is available as a PDF (106.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Araki H., Inomata N., Yamazaki T. Molecular evolution of duplicated amylase gene regions in Drosophila melanogaster: evidence of positive selection in the coding regions and selective constraints in the cis-regulatory regions. Genetics. 2001 Feb;157(2):667–677. doi: 10.1093/genetics/157.2.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bahn E. Crossing over in the chromosomal region determining amylase isozymes in Drosophila melanogaster. Hereditas. 1967;58(1):1–12. doi: 10.1111/j.1601-5223.1967.tb02138.x. [DOI] [PubMed] [Google Scholar]
- Baltimore D. Gene conversion: some implications for immunoglobulin genes. Cell. 1981 Jun;24(3):592–594. doi: 10.1016/0092-8674(81)90082-9. [DOI] [PubMed] [Google Scholar]
- Basten C. J., Weir B. S. Effect of gene conversion on variances of digenic identity measures. Theor Popul Biol. 1990 Oct;38(2):125–148. doi: 10.1016/0040-5809(90)90007-i. [DOI] [PubMed] [Google Scholar]
- Birky C. W., Jr, Skavaril R. V. Maintenance of genetic homogeneity in systems with multiple genomes. Genet Res. 1976 Apr;27(2):249–265. doi: 10.1017/s001667230001644x. [DOI] [PubMed] [Google Scholar]
- Black J. A., Gibson D. Neutral evolution and immunoglobulin diversity. Nature. 1974 Jul 26;250(464):327–328. doi: 10.1038/250327a0. [DOI] [PubMed] [Google Scholar]
- Dover G., Coen E. Springcleaning ribosomal DNA: a model for multigene evolution? Nature. 1981 Apr 30;290(5809):731–732. doi: 10.1038/290731a0. [DOI] [PubMed] [Google Scholar]
- Inomata N., Shibata H., Okuyama E., Yamazaki T. Evolutionary relationships and sequence variation of alpha-amylase variants encoded by duplicated genes in the Amy locus of Drosophila melanogaster. Genetics. 1995 Sep;141(1):237–244. doi: 10.1093/genetics/141.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagylaki T. Evolution of multigene families under interchromosomal gene conversion. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3796–3800. doi: 10.1073/pnas.81.12.3796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagylaki T. The evolution of multigene families under intrachromosomal gene conversion. Genetics. 1984 Mar;106(3):529–548. doi: 10.1093/genetics/106.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Roychoudhury A. K. Sampling variances of heterozygosity and genetic distance. Genetics. 1974 Feb;76(2):379–390. doi: 10.1093/genetics/76.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T. Allelic and nonallelic homology of a supergene family. Proc Natl Acad Sci U S A. 1982 May;79(10):3251–3254. doi: 10.1073/pnas.79.10.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T. Genetic variation in small multigene families. Genet Res. 1981 Apr;37(2):133–149. doi: 10.1017/s0016672300020115. [DOI] [PubMed] [Google Scholar]
- Ohta T. On the evolution of multigene families. Theor Popul Biol. 1983 Apr;23(2):216–240. doi: 10.1016/0040-5809(83)90015-1. [DOI] [PubMed] [Google Scholar]
- Ohta T. Simple model for treating evolution of multigene families. Nature. 1976 Sep 2;263(5572):74–76. doi: 10.1038/263074a0. [DOI] [PubMed] [Google Scholar]
- Ohta T. Theoretical population genetics of repeated genes forming a multigene family. Genetics. 1978 Apr;88(4):845–861. doi: 10.1093/genetics/88.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T. Variances and covariances of identity coefficients of a multigene family. Proc Natl Acad Sci U S A. 1985 Feb;82(3):829–833. doi: 10.1073/pnas.82.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith G. P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976 Feb 13;191(4227):528–535. doi: 10.1126/science.1251186. [DOI] [PubMed] [Google Scholar]
- Smith G. P. Unequal crossover and the evolution of multigene families. Cold Spring Harb Symp Quant Biol. 1974;38:507–513. doi: 10.1101/sqb.1974.038.01.055. [DOI] [PubMed] [Google Scholar]
- Walsh J. B. Unusual behaviour of linkage disequilibrium in two-locus gene conversion models. Genet Res. 1988 Feb;51(1):55–58. doi: 10.1017/s0016672300023946. [DOI] [PubMed] [Google Scholar]