Skip to main content
Genetics logoLink to Genetics
. 2002 Jun;161(2):509–519. doi: 10.1093/genetics/161.2.509

Spt3 plays opposite roles in filamentous growth in Saccharomyces cerevisiae and Candida albicans and is required for C. albicans virulence.

Lisa Laprade 1, Victor L Boyartchuk 1, William F Dietrich 1, Fred Winston 1
PMCID: PMC1462142  PMID: 12072450

Abstract

Spt3 of Saccharomyces cerevisiae is required for the normal transcription of many genes in vivo. Past studies have shown that Spt3 is required for both mating and sporulation, two events that initiate when cells are at G(1)/START. We now show that Spt3 is needed for two other events that begin at G(1)/START, diploid filamentous growth and haploid invasive growth. In addition, Spt3 is required for normal expression of FLO11, a gene required for filamentous growth, although this defect is not the sole cause of the spt3Delta/spt3Delta filamentous growth defect. To extend our studies of Spt3's role in filamentous growth to the pathogenic yeast Candida albicans, we have identified the C. albicans SPT3 gene and have studied its role in C. albicans filamentous growth and virulence. Surprisingly, C. albicans spt3Delta/spt3Delta mutants are hyperfilamentous, the opposite phenotype observed for S. cerevisiae spt3Delta/spt3Delta mutants. Furthermore, C. albicans spt3Delta/spt3Delta mutants are avirulent in mice. These experiments demonstrate that Spt3 plays important but opposite roles in filamentous growth in S. cerevisiae and C. albicans.

Full Text

The Full Text of this article is available as a PDF (261.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amberg D. C., Botstein D., Beasley E. M. Precise gene disruption in Saccharomyces cerevisiae by double fusion polymerase chain reaction. Yeast. 1995 Oct;11(13):1275–1280. doi: 10.1002/yea.320111307. [DOI] [PubMed] [Google Scholar]
  2. Belotserkovskaya R., Sterner D. E., Deng M., Sayre M. H., Lieberman P. M., Berger S. L. Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol Cell Biol. 2000 Jan;20(2):634–647. doi: 10.1128/mcb.20.2.634-647.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhaumik S. R., Green M. R. SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev. 2001 Aug 1;15(15):1935–1945. doi: 10.1101/gad.911401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birck C., Poch O., Romier C., Ruff M., Mengus G., Lavigne A. C., Davidson I., Moras D. Human TAF(II)28 and TAF(II)18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell. 1998 Jul 24;94(2):239–249. doi: 10.1016/s0092-8674(00)81423-3. [DOI] [PubMed] [Google Scholar]
  5. Braun B. R., Johnson A. D. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science. 1997 Jul 4;277(5322):105–109. doi: 10.1126/science.277.5322.105. [DOI] [PubMed] [Google Scholar]
  6. Braun B. R., Johnson A. D. TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans. Genetics. 2000 May;155(1):57–67. doi: 10.1093/genetics/155.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Braun B. R., Kadosh D., Johnson A. D. NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J. 2001 Sep 3;20(17):4753–4761. doi: 10.1093/emboj/20.17.4753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown A. J., Gow N. A. Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol. 1999 Aug;7(8):333–338. doi: 10.1016/s0966-842x(99)01556-5. [DOI] [PubMed] [Google Scholar]
  9. Brown C. E., Howe L., Sousa K., Alley S. C., Carrozza M. J., Tan S., Workman J. L. Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science. 2001 Jun 22;292(5525):2333–2337. doi: 10.1126/science.1060214. [DOI] [PubMed] [Google Scholar]
  10. Brownell J. E., Zhou J., Ranalli T., Kobayashi R., Edmondson D. G., Roth S. Y., Allis C. D. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996 Mar 22;84(6):843–851. doi: 10.1016/s0092-8674(00)81063-6. [DOI] [PubMed] [Google Scholar]
  11. Butt T. R., Sternberg E. J., Gorman J. A., Clark P., Hamer D., Rosenberg M., Crooke S. T. Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3332–3336. doi: 10.1073/pnas.81.11.3332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisenmann D. M., Arndt K. M., Ricupero S. L., Rooney J. W., Winston F. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 1992 Jul;6(7):1319–1331. doi: 10.1101/gad.6.7.1319. [DOI] [PubMed] [Google Scholar]
  13. Eisenmann D. M., Chapon C., Roberts S. M., Dollard C., Winston F. The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics. 1994 Jul;137(3):647–657. doi: 10.1093/genetics/137.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fidel P. L., Jr, Sobel J. D. Immunopathogenesis of recurrent vulvovaginal candidiasis. Clin Microbiol Rev. 1996 Jul;9(3):335–348. doi: 10.1128/cmr.9.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gancedo J. M. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001 Jan;25(1):107–123. doi: 10.1111/j.1574-6976.2001.tb00573.x. [DOI] [PubMed] [Google Scholar]
  16. Gansheroff L. J., Dollard C., Tan P., Winston F. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics. 1995 Feb;139(2):523–536. doi: 10.1093/genetics/139.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gillum A. M., Tsay E. Y., Kirsch D. R. Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet. 1984;198(2):179–182. doi: 10.1007/BF00328721. [DOI] [PubMed] [Google Scholar]
  18. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992 Mar 20;68(6):1077–1090. doi: 10.1016/0092-8674(92)90079-r. [DOI] [PubMed] [Google Scholar]
  19. Grant P. A., Duggan L., Côté J., Roberts S. M., Brownell J. E., Candau R., Ohba R., Owen-Hughes T., Allis C. D., Winston F. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 1997 Jul 1;11(13):1640–1650. doi: 10.1101/gad.11.13.1640. [DOI] [PubMed] [Google Scholar]
  20. Grant P. A., Schieltz D., Pray-Grant M. G., Yates J. R., 3rd, Workman J. L. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol Cell. 1998 Dec;2(6):863–867. doi: 10.1016/s1097-2765(00)80300-7. [DOI] [PubMed] [Google Scholar]
  21. Grant P. A., Sterner D. E., Duggan L. J., Workman J. L., Berger S. L. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 1998 May;8(5):193–197. doi: 10.1016/s0962-8924(98)01263-x. [DOI] [PubMed] [Google Scholar]
  22. Hirschhorn J. N., Winston F. SPT3 is required for normal levels of a-factor and alpha-factor expression in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Feb;8(2):822–827. doi: 10.1128/mcb.8.2.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hollenhorst P. C., Bose M. E., Mielke M. R., Müller U., Fox C. A. Forkhead genes in transcriptional silencing, cell morphology and the cell cycle. Overlapping and distinct functions for FKH1 and FKH2 in Saccharomyces cerevisiae. Genetics. 2000 Apr;154(4):1533–1548. doi: 10.1093/genetics/154.4.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Horiuchi J., Silverman N., Piña B., Marcus G. A., Guarente L. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3. Mol Cell Biol. 1997 Jun;17(6):3220–3228. doi: 10.1128/mcb.17.6.3220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hull C. M., Johnson A. D. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science. 1999 Aug 20;285(5431):1271–1275. doi: 10.1126/science.285.5431.1271. [DOI] [PubMed] [Google Scholar]
  26. Kadosh D., Johnson A. D. Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol. 2001 Apr;21(7):2496–2505. doi: 10.1128/MCB.21.7.2496-2505.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Khalaf R. A., Zitomer R. S. The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics. 2001 Apr;157(4):1503–1512. doi: 10.1093/genetics/157.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lee T. I., Causton H. C., Holstege F. C., Shen W. C., Hannett N., Jennings E. G., Winston F., Green M. R., Young R. A. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature. 2000 Jun 8;405(6787):701–704. doi: 10.1038/35015104. [DOI] [PubMed] [Google Scholar]
  29. Liu H., Styles C. A., Fink G. R. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 1993 Dec 10;262(5140):1741–1744. doi: 10.1126/science.8259520. [DOI] [PubMed] [Google Scholar]
  30. Lo H. J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997 Sep 5;90(5):939–949. doi: 10.1016/s0092-8674(00)80358-x. [DOI] [PubMed] [Google Scholar]
  31. Lo W. S., Dranginis A. M. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol. 1996 Dec;178(24):7144–7151. doi: 10.1128/jb.178.24.7144-7151.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lo W. S., Dranginis A. M. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell. 1998 Jan;9(1):161–171. doi: 10.1091/mbc.9.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Madhani H. D., Styles C. A., Fink G. R. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell. 1997 Nov 28;91(5):673–684. doi: 10.1016/s0092-8674(00)80454-7. [DOI] [PubMed] [Google Scholar]
  34. Madison J. M., Winston F. Identification and analysis of homologues of Saccharomyces cerevisiae Spt3 suggest conserved functional domains. Yeast. 1998 Mar 30;14(5):409–417. doi: 10.1002/(SICI)1097-0061(19980330)14:5<409::AID-YEA237>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  35. Martinez E., Kundu T. K., Fu J., Roeder R. G. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem. 1998 Sep 11;273(37):23781–23785. doi: 10.1074/jbc.273.37.23781. [DOI] [PubMed] [Google Scholar]
  36. Martinez E., Palhan V. B., Tjernberg A., Lymar E. S., Gamper A. M., Kundu T. K., Chait B. T., Roeder R. G. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol. 2001 Oct;21(20):6782–6795. doi: 10.1128/MCB.21.20.6782-6795.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Murad A. M., Leng P., Straffon M., Wishart J., Macaskill S., MacCallum D., Schnell N., Talibi D., Marechal D., Tekaia F. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 2001 Sep 3;20(17):4742–4752. doi: 10.1093/emboj/20.17.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Navarro-García F., Pérez-Díaz R. M., Negredo A. I., Pla J., Nombela C. Cloning and sequence of a 3.835 kbp DNA fragment containing the HIS4 gene and a fragment of a PEX5-like gene from Candida albicans. Yeast. 1998 Sep 15;14(12):1147–1157. doi: 10.1002/(SICI)1097-0061(19980915)14:12<1147::AID-YEA297>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  39. Navarro-García F., Sánchez M., Nombela C., Pla J. Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev. 2001 Apr;25(2):245–268. doi: 10.1111/j.1574-6976.2001.tb00577.x. [DOI] [PubMed] [Google Scholar]
  40. Ogryzko V. V., Kotani T., Zhang X., Schiltz R. L., Howard T., Yang X. J., Howard B. H., Qin J., Nakatani Y. Histone-like TAFs within the PCAF histone acetylase complex. Cell. 1998 Jul 10;94(1):35–44. doi: 10.1016/s0092-8674(00)81219-2. [DOI] [PubMed] [Google Scholar]
  41. Pan X., Harashima T., Heitman J. Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol. 2000 Dec;3(6):567–572. doi: 10.1016/s1369-5274(00)00142-9. [DOI] [PubMed] [Google Scholar]
  42. Roberts R. L., Fink G. R. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 1994 Dec 15;8(24):2974–2985. doi: 10.1101/gad.8.24.2974. [DOI] [PubMed] [Google Scholar]
  43. Roberts S. M., Winston F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics. 1997 Oct;147(2):451–465. doi: 10.1093/genetics/147.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Roberts S. M., Winston F. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Jun;16(6):3206–3213. doi: 10.1128/mcb.16.6.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Roth S. Y., Denu J. M., Allis C. D. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120. doi: 10.1146/annurev.biochem.70.1.81. [DOI] [PubMed] [Google Scholar]
  46. Rupp S., Summers E., Lo H. J., Madhani H., Fink G. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 1999 Mar 1;18(5):1257–1269. doi: 10.1093/emboj/18.5.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Saporito-Irwin S. M., Birse C. E., Sypherd P. S., Fonzi W. A. PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol. 1995 Feb;15(2):601–613. doi: 10.1128/mcb.15.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Siddiqui A. H., Brandriss M. C. A regulatory region responsible for proline-specific induction of the yeast PUT2 gene is adjacent to its TATA box. Mol Cell Biol. 1988 Nov;8(11):4634–4641. doi: 10.1128/mcb.8.11.4634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sterner D. E., Grant P. A., Roberts S. M., Duggan L. J., Belotserkovskaya R., Pacella L. A., Winston F., Workman J. L., Berger S. L. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol. 1999 Jan;19(1):86–98. doi: 10.1128/mcb.19.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sudarsanam P., Cao Y., Wu L., Laurent B. C., Winston F. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J. 1999 Jun 1;18(11):3101–3106. doi: 10.1093/emboj/18.11.3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wilson R. B., Davis D., Mitchell A. P. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol. 1999 Mar;181(6):1868–1874. doi: 10.1128/jb.181.6.1868-1874.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Winston F., Chaleff D. T., Valent B., Fink G. R. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics. 1984 Jun;107(2):179–197. doi: 10.1093/genetics/107.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Winston F., Durbin K. J., Fink G. R. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell. 1984 Dec;39(3 Pt 2):675–682. doi: 10.1016/0092-8674(84)90474-4. [DOI] [PubMed] [Google Scholar]
  54. Yu J., Madison J. M., Mundlos S., Winston F., Olsen B. R. Characterization of a human homologue of the Saccharomyces cerevisiae transcription factor spt3 (SUPT3H). Genomics. 1998 Oct 1;53(1):90–96. doi: 10.1006/geno.1998.5500. [DOI] [PubMed] [Google Scholar]
  55. Zhu G., Spellman P. T., Volpe T., Brown P. O., Botstein D., Davis T. N., Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature. 2000 Jul 6;406(6791):90–94. doi: 10.1038/35017581. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES