Skip to main content
Genetics logoLink to Genetics
. 2002 Jun;161(2):549–562. doi: 10.1093/genetics/161.2.549

A molecular genetic dissection of the evolutionarily conserved N terminus of yeast Rad52.

Uffe H Mortensen 1, Naz Erdeniz 1, Qi Feng 1, Rodney Rothstein 1
PMCID: PMC1462154  PMID: 12072453

Abstract

Rad52 is a DNA-binding protein that stimulates the annealing of complementary single-stranded DNA. Only the N terminus of Rad52 is evolutionarily conserved; it contains the core activity of the protein, including its DNA-binding activity. To identify amino acid residues that are important for Rad52 function(s), we systematically replaced 76 of 165 amino acid residues in the N terminus with alanine. These substitutions were examined for their effects on the repair of gamma-ray-induced DNA damage and on both interchromosomal and direct repeat heteroallelic recombination. This analysis identified five regions that are required for efficient gamma-ray damage repair or mitotic recombination. Two regions, I and II, also contain the classic mutations, rad52-2 and rad52-1, respectively. Interestingly, four of the five regions contain mutations that impair the ability to repair gamma-ray-induced DNA damage yet still allow mitotic recombinants to be produced at rates that are similar to or higher than those obtained with wild-type strains. In addition, a new class of separation-of-function mutation that is only partially deficient in the repair of gamma-ray damage, but exhibits decreased mitotic recombination similar to rad52 null strains, was identified. These results suggest that Rad52 protein acts differently on lesions that occur spontaneously during the cell cycle than on those induced by gamma-irradiation.

Full Text

The Full Text of this article is available as a PDF (309.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adzuma K., Ogawa T., Ogawa H. Primary structure of the RAD52 gene in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Dec;4(12):2735–2744. doi: 10.1128/mcb.4.12.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bai Y., Davis A. P., Symington L. S. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics. 1999 Nov;153(3):1117–1130. doi: 10.1093/genetics/153.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bai Y., Symington L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 1996 Aug 15;10(16):2025–2037. doi: 10.1101/gad.10.16.2025. [DOI] [PubMed] [Google Scholar]
  4. Baumann P., West S. C. Heteroduplex formation by human Rad51 protein: effects of DNA end-structure, hRP-A and hRad52. J Mol Biol. 1999 Aug 13;291(2):363–374. doi: 10.1006/jmbi.1999.2954. [DOI] [PubMed] [Google Scholar]
  5. Baumann P., West S. C. The human Rad51 protein: polarity of strand transfer and stimulation by hRP-A. EMBO J. 1997 Sep 1;16(17):5198–5206. doi: 10.1093/emboj/16.17.5198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bendixen C., Sunjevaric I., Bauchwitz R., Rothstein R. Identification of a mouse homologue of the Saccharomyces cerevisiae recombination and repair gene, RAD52. Genomics. 1994 Sep 1;23(1):300–303. doi: 10.1006/geno.1994.1503. [DOI] [PubMed] [Google Scholar]
  7. Benson F. E., Baumann P., West S. C. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature. 1998 Jan 22;391(6665):401–404. doi: 10.1038/34937. [DOI] [PubMed] [Google Scholar]
  8. Bratty J., Ferbeyre G., Molinaro C., Cedergren R. Stimulation of mitotic recombination upon transcription from the yeast GAL1 promoter but not from other RNA polymerase I, II and III promoters. Curr Genet. 1996 Nov;30(5):381–388. doi: 10.1007/s002940050146. [DOI] [PubMed] [Google Scholar]
  9. Cunningham B. C., Wells J. A. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science. 1989 Jun 2;244(4908):1081–1085. doi: 10.1126/science.2471267. [DOI] [PubMed] [Google Scholar]
  10. Erdeniz N., Rothstein R. Rsp5, a ubiquitin-protein ligase, is involved in degradation of the single-stranded-DNA binding protein rfa1 in Saccharomyces cerevisiae. Mol Cell Biol. 2000 Jan;20(1):224–232. doi: 10.1128/mcb.20.1.224-232.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fan H. Y., Cheng K. K., Klein H. L. Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1 delta of Saccharomyces cerevisiae. Genetics. 1996 Mar;142(3):749–759. doi: 10.1093/genetics/142.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frishman D., Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng. 1996 Feb;9(2):133–142. doi: 10.1093/protein/9.2.133. [DOI] [PubMed] [Google Scholar]
  13. Game J. C., Mortimer R. K. A genetic study of x-ray sensitive mutants in yeast. Mutat Res. 1974 Sep;24(3):281–292. doi: 10.1016/0027-5107(74)90176-6. [DOI] [PubMed] [Google Scholar]
  14. Game J. C., Zamb T. J., Braun R. J., Resnick M., Roth R. M. The Role of Radiation (rad) Genes in Meiotic Recombination in Yeast. Genetics. 1980 Jan;94(1):51–68. doi: 10.1093/genetics/94.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gangloff S., Zou H., Rothstein R. Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast. EMBO J. 1996 Apr 1;15(7):1715–1725. [PMC free article] [PubMed] [Google Scholar]
  16. Hays S. L., Firmenich A. A., Massey P., Banerjee R., Berg P. Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol Cell Biol. 1998 Jul;18(7):4400–4406. doi: 10.1128/mcb.18.7.4400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kagawa W., Kurumizaka H., Ikawa S., Yokoyama S., Shibata T. Homologous pairing promoted by the human Rad52 protein. J Biol Chem. 2001 Jul 13;276(37):35201–35208. doi: 10.1074/jbc.M104938200. [DOI] [PubMed] [Google Scholar]
  18. Kaytor M. D., Livingston D. M. Allele-specific suppression of temperature-sensitive mutations of the Saccharomyces cerevisiae RAD52 gene. Curr Genet. 1996 Feb;29(3):203–210. doi: 10.1007/BF02221549. [DOI] [PubMed] [Google Scholar]
  19. Kaytor M. D., Livingston D. M. Saccharomyces cerevisiae RAD52 alleles temperature-sensitive for the repair of DNA double-strand breaks. Genetics. 1994 Aug;137(4):933–944. doi: 10.1093/genetics/137.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klein H. L. Genetic control of intrachromosomal recombination. Bioessays. 1995 Feb;17(2):147–159. doi: 10.1002/bies.950170210. [DOI] [PubMed] [Google Scholar]
  21. Le S., Moore J. K., Haber J. E., Greider C. W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics. 1999 May;152(1):143–152. doi: 10.1093/genetics/152.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maldonado E., Shiekhattar R., Sheldon M., Cho H., Drapkin R., Rickert P., Lees E., Anderson C. W., Linn S., Reinberg D. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature. 1996 May 2;381(6577):86–89. doi: 10.1038/381086a0. [DOI] [PubMed] [Google Scholar]
  23. Malone R. E., Esposito R. E. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc Natl Acad Sci U S A. 1980 Jan;77(1):503–507. doi: 10.1073/pnas.77.1.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Malone R. E., Montelone B. A., Edwards C., Carney K., Hoekstra M. F. A reexamination of the role of the RAD52 gene in spontaneous mitotic recombination. Curr Genet. 1988 Sep;14(3):211–223. doi: 10.1007/BF00376741. [DOI] [PubMed] [Google Scholar]
  25. Milne G. T., Weaver D. T. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 1993 Sep;7(9):1755–1765. doi: 10.1101/gad.7.9.1755. [DOI] [PubMed] [Google Scholar]
  26. Mortensen U. H., Bendixen C., Sunjevaric I., Rothstein R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10729–10734. doi: 10.1073/pnas.93.20.10729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Muris D. F., Bezzubova O., Buerstedde J. M., Vreeken K., Balajee A. S., Osgood C. J., Troelstra C., Hoeijmakers J. H., Ostermann K., Schmidt H. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination. Mutat Res. 1994 Nov;315(3):295–305. doi: 10.1016/0921-8777(94)90040-x. [DOI] [PubMed] [Google Scholar]
  28. New J. H., Sugiyama T., Zaitseva E., Kowalczykowski S. C. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature. 1998 Jan 22;391(6665):407–410. doi: 10.1038/34950. [DOI] [PubMed] [Google Scholar]
  29. Nguyen M. M., Livingston D. M. Cold-sensitive rad52 alleles of yeast. Curr Genet. 1997 Aug;32(2):100–107. doi: 10.1007/s002940050253. [DOI] [PubMed] [Google Scholar]
  30. Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. doi: 10.1073/pnas.78.10.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ostermann K., Lorentz A., Schmidt H. The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Dec 25;21(25):5940–5944. doi: 10.1093/nar/21.25.5940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Park M. S., Ludwig D. L., Stigger E., Lee S. H. Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J Biol Chem. 1996 Aug 2;271(31):18996–19000. doi: 10.1074/jbc.271.31.18996. [DOI] [PubMed] [Google Scholar]
  33. Pâques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun;63(2):349–404. doi: 10.1128/mmbr.63.2.349-404.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ranatunga W., Jackson D., Lloyd J. A., Forget A. L., Knight K. L., Borgstahl G. E. Human RAD52 exhibits two modes of self-association. J Biol Chem. 2001 Feb 13;276(19):15876–15880. doi: 10.1074/jbc.M011747200. [DOI] [PubMed] [Google Scholar]
  35. Reddy G., Golub E. I., Radding C. M. Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat Res. 1997 Jun 9;377(1):53–59. doi: 10.1016/s0027-5107(97)00057-2. [DOI] [PubMed] [Google Scholar]
  36. Resnick M. A. Genetic control of radiation sensitivity in Saccharomyces cerevisiae. Genetics. 1969 Jul;62(3):519–531. doi: 10.1093/genetics/62.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Resnick M. A., Martin P. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet. 1976 Jan 16;143(2):119–129. doi: 10.1007/BF00266917. [DOI] [PubMed] [Google Scholar]
  38. Roeder G. S. Meiotic chromosomes: it takes two to tango. Genes Dev. 1997 Oct 15;11(20):2600–2621. doi: 10.1101/gad.11.20.2600. [DOI] [PubMed] [Google Scholar]
  39. Shen Z., Cloud K. G., Chen D. J., Park M. S. Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem. 1996 Jan 5;271(1):148–152. doi: 10.1074/jbc.271.1.148. [DOI] [PubMed] [Google Scholar]
  40. Shen Z., Denison K., Lobb R., Gatewood J. M., Chen D. J. The human and mouse homologs of the yeast RAD52 gene: cDNA cloning, sequence analysis, assignment to human chromosome 12p12.2-p13, and mRNA expression in mouse tissues. Genomics. 1995 Jan 1;25(1):199–206. doi: 10.1016/0888-7543(95)80126-7. [DOI] [PubMed] [Google Scholar]
  41. Shen Z., Peterson S. R., Comeaux J. C., Zastrow D., Moyzis R. K., Bradbury E. M., Chen D. J. Self-association of human RAD52 protein. Mutat Res. 1996 Oct 18;364(2):81–89. doi: 10.1016/0921-8777(96)00025-0. [DOI] [PubMed] [Google Scholar]
  42. Shinohara A., Ogawa H., Ogawa T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992 May 1;69(3):457–470. doi: 10.1016/0092-8674(92)90447-k. [DOI] [PubMed] [Google Scholar]
  43. Shinohara A., Ogawa T. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature. 1998 Jan 22;391(6665):404–407. doi: 10.1038/34943. [DOI] [PubMed] [Google Scholar]
  44. Shinohara A., Shinohara M., Ohta T., Matsuda S., Ogawa T. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells. 1998 Mar;3(3):145–156. doi: 10.1046/j.1365-2443.1998.00176.x. [DOI] [PubMed] [Google Scholar]
  45. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Smith J., Rothstein R. An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae. Genetics. 1999 Feb;151(2):447–458. doi: 10.1093/genetics/151.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Song B., Sung P. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J Biol Chem. 2000 May 26;275(21):15895–15904. doi: 10.1074/jbc.M910244199. [DOI] [PubMed] [Google Scholar]
  48. Stasiak A. Z., Larquet E., Stasiak A., Müller S., Engel A., Van Dyck E., West S. C., Egelman E. H. The human Rad52 protein exists as a heptameric ring. Curr Biol. 2000 Mar 23;10(6):337–340. doi: 10.1016/s0960-9822(00)00385-7. [DOI] [PubMed] [Google Scholar]
  49. Sugiyama T., New J. H., Kowalczykowski S. C. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6049–6054. doi: 10.1073/pnas.95.11.6049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sung P. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem. 1997 Nov 7;272(45):28194–28197. doi: 10.1074/jbc.272.45.28194. [DOI] [PubMed] [Google Scholar]
  51. Suto K., Nagata A., Murakami H., Okayama H. A double-strand break repair component is essential for S phase completion in fission yeast cell cycling. Mol Biol Cell. 1999 Oct;10(10):3331–3343. doi: 10.1091/mbc.10.10.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Szostak J. W., Wu R. Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature. 1980 Apr 3;284(5755):426–430. doi: 10.1038/284426a0. [DOI] [PubMed] [Google Scholar]
  53. Thomas B. J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. doi: 10.1016/0092-8674(89)90584-9. [DOI] [PubMed] [Google Scholar]
  54. Thomas B. J., Rothstein R. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics. 1989 Dec;123(4):725–738. doi: 10.1093/genetics/123.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Van Dyck E., Hajibagheri N. M., Stasiak A., West S. C. Visualisation of human rad52 protein and its complexes with hRad51 and DNA. J Mol Biol. 1998 Dec 11;284(4):1027–1038. doi: 10.1006/jmbi.1998.2203. [DOI] [PubMed] [Google Scholar]
  56. Van Dyck E., Stasiak A. Z., Stasiak A., West S. C. Binding of double-strand breaks in DNA by human Rad52 protein. Nature. 1999 Apr 22;398(6729):728–731. doi: 10.1038/19560. [DOI] [PubMed] [Google Scholar]
  57. Von Borstel R. C., Cain K. T., Steinberg C. M. Inheritance of spontaneous mutability in yeast. Genetics. 1971 Sep;69(1):17–27. doi: 10.1093/genetics/69.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zou H., Rothstein R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell. 1997 Jul 11;90(1):87–96. doi: 10.1016/s0092-8674(00)80316-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES