Skip to main content
Genetics logoLink to Genetics
. 2002 Jun;161(2):563–574. doi: 10.1093/genetics/161.2.563

Volatile anesthetics affect nutrient availability in yeast.

Laura K Palmer 1, Darren Wolfe 1, Jessica L Keeley 1, Ralph L Keil 1
PMCID: PMC1462158  PMID: 12072454

Abstract

Volatile anesthetics affect all cells and tissues tested, but their mechanisms and sites of action remain unknown. To gain insight into the cellular activities of anesthetics, we have isolated genes that, when overexpressed, render Saccharomyces cerevisiae resistant to the volatile anesthetic isoflurane. One of these genes, WAK3/TAT1, encodes a permease that transports amino acids including leucine and tryptophan, for which our wild-type strain is auxotrophic. This suggests that availability of amino acids may play a key role in anesthetic response. Multiple lines of evidence support this proposal: (i) Deletion or overexpression of permeases that transport leucine and/or tryptophan alters anesthetic response; (ii) prototrophic strains are anesthetic resistant; (iii) altered concentrations of leucine and tryptophan in the medium affect anesthetic response; and (iv) uptake of leucine and tryptophan is inhibited during anesthetic exposure. Not all amino acids are critical for this response since we find that overexpression of the lysine permease does not affect anesthetic sensitivity. These findings are consistent with models in which anesthetics have a physiologically important effect on availability of specific amino acids by altering function of their permeases. In addition, we show that there is a relationship between nutrient availability and ubiquitin metabolism in this response.

Full Text

The Full Text of this article is available as a PDF (324.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajmoczi M., Sneve M., Eide D. J., Drewes L. R. TAT1 encodes a low-affinity histidine transporter in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1998 Feb 4;243(1):205–209. doi: 10.1006/bbrc.1998.8082. [DOI] [PubMed] [Google Scholar]
  2. Balzi E., Goffeau A. Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr. 1995 Feb;27(1):71–76. doi: 10.1007/BF02110333. [DOI] [PubMed] [Google Scholar]
  3. Beck T., Schmidt A., Hall M. N. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol. 1999 Sep 20;146(6):1227–1238. doi: 10.1083/jcb.146.6.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Botstein D., Falco S. C., Stewart S. E., Brennan M., Scherer S., Stinchcomb D. T., Struhl K., Davis R. W. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene. 1979 Dec;8(1):17–24. doi: 10.1016/0378-1119(79)90004-0. [DOI] [PubMed] [Google Scholar]
  5. Bátai I., Kerényi M., Tekeres M. The impact of drugs used in anaesthesia on bacteria. Eur J Anaesthesiol. 1999 Jul;16(7):425–440. doi: 10.1046/j.1365-2346.1999.00498.x. [DOI] [PubMed] [Google Scholar]
  6. Didion T., Grauslund M., Kielland-Brandt M. C., Andersen H. A. Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae. J Bacteriol. 1996 Apr;178(7):2025–2029. doi: 10.1128/jb.178.7.2025-2029.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eckenhoff R. G., Johansson J. S. Molecular interactions between inhaled anesthetics and proteins. Pharmacol Rev. 1997 Dec;49(4):343–367. [PubMed] [Google Scholar]
  8. Eckenhoff R. G., Johansson J. S. On the relevance of "clinically relevant concentrations" of inhaled anesthetics in in vitro experiments. Anesthesiology. 1999 Sep;91(3):856–860. doi: 10.1097/00000542-199909000-00039. [DOI] [PubMed] [Google Scholar]
  9. Eckenhoff R. G., Johansson J. S. What are "relevant" concentrations? Anesthesiology. 2001 Dec;95(6):1537–1539. doi: 10.1097/00000542-200112000-00049. [DOI] [PubMed] [Google Scholar]
  10. Eger E. I., 2nd, Fisher D. M., Dilger J. P., Sonner J. M., Evers A., Franks N. P., Harris R. A., Kendig J. J., Lieb W. R., Yamakura T. Relevant concentrations of inhaled anesthetics for in vitro studies of anesthetic mechanisms. Anesthesiology. 2001 May;94(5):915–921. doi: 10.1097/00000542-200105000-00032. [DOI] [PubMed] [Google Scholar]
  11. Forsberg H., Hammar M., Andréasson C., Molinér A., Ljungdahl P. O. Suppressors of ssy1 and ptr3 null mutations define novel amino acid sensor-independent genes in Saccharomyces cerevisiae. Genetics. 2001 Jul;158(3):973–988. doi: 10.1093/genetics/158.3.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ghislain M., Dohmen R. J., Levy F., Varshavsky A. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J. 1996 Sep 16;15(18):4884–4899. [PMC free article] [PubMed] [Google Scholar]
  13. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  14. Grauslund M., Didion T., Kielland-Brandt M. C., Andersen H. A. BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae. Biochim Biophys Acta. 1995 Nov 30;1269(3):275–280. doi: 10.1016/0167-4889(95)00138-8. [DOI] [PubMed] [Google Scholar]
  15. Güldener U., Heck S., Fielder T., Beinhauer J., Hegemann J. H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996 Jul 1;24(13):2519–2524. doi: 10.1093/nar/24.13.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hein C., Springael J. Y., Volland C., Haguenauer-Tsapis R., André B. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol. 1995 Oct;18(1):77–87. doi: 10.1111/j.1365-2958.1995.mmi_18010077.x. [DOI] [PubMed] [Google Scholar]
  17. Heitman J., Koller A., Kunz J., Henriquez R., Schmidt A., Movva N. R., Hall M. N. The immunosuppressant FK506 inhibits amino acid import in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Aug;13(8):5010–5019. doi: 10.1128/mcb.13.8.5010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Helliwell S. B., Losko S., Kaiser C. A. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol. 2001 May 14;153(4):649–662. doi: 10.1083/jcb.153.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hicke L. Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J. 1997 Dec;11(14):1215–1226. doi: 10.1096/fasebj.11.14.9409540. [DOI] [PubMed] [Google Scholar]
  20. Iraqui I., Vissers S., Bernard F., de Craene J. O., Boles E., Urrestarazu A., André B. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol. 1999 Feb;19(2):989–1001. doi: 10.1128/mcb.19.2.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keil R. L., Wolfe D., Reiner T., Peterson C. J., Riley J. L. Molecular genetic analysis of volatile-anesthetic action. Mol Cell Biol. 1996 Jul;16(7):3446–3453. doi: 10.1128/mcb.16.7.3446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klasson H., Fink G. R., Ljungdahl P. O. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol. 1999 Aug;19(8):5405–5416. doi: 10.1128/mcb.19.8.5405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lin Y. H., Keil R. L. Mutations affecting RNA polymerase I-stimulated exchange and rDNA recombination in yeast. Genetics. 1991 Jan;127(1):31–38. doi: 10.1093/genetics/127.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morgan P. G., Sedensky M. M., Meneely P. M., Cascorbi H. F. The effect of two genes on anesthetic response in the nematode Caenorhabditis elegans. Anesthesiology. 1988 Aug;69(2):246–251. doi: 10.1097/00000542-198808000-00015. [DOI] [PubMed] [Google Scholar]
  25. Nelissen B., De Wachter R., Goffeau A. Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev. 1997 Sep;21(2):113–134. doi: 10.1111/j.1574-6976.1997.tb00347.x. [DOI] [PubMed] [Google Scholar]
  26. Omura F., Kodama Y., Ashikari T. The N-terminal domain of the yeast permease Bap2p plays a role in its degradation. Biochem Biophys Res Commun. 2001 Oct 12;287(5):1045–1050. doi: 10.1006/bbrc.2001.5697. [DOI] [PubMed] [Google Scholar]
  27. Regenberg B., Düring-Olsen L., Kielland-Brandt M. C., Holmberg S. Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet. 1999 Dec;36(6):317–328. doi: 10.1007/s002940050506. [DOI] [PubMed] [Google Scholar]
  28. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  29. Schmidt A., Hall M. N., Koller A. Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol Cell Biol. 1994 Oct;14(10):6597–6606. doi: 10.1128/mcb.14.10.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sedensky M. M., Cascorbi H. F., Meinwald J., Radford P., Morgan P. G. Genetic differences affecting the potency of stereoisomers of halothane. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10054–10058. doi: 10.1073/pnas.91.21.10054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shimada H., Tomita Y., Inooka G., Maruyama Y. Sodium-coupled neutral amino acid cotransporter inhibited by the volatile anesthetic, halothane, in megakaryocytes. Jpn J Physiol. 1995;45(1):165–176. doi: 10.2170/jjphysiol.45.165. [DOI] [PubMed] [Google Scholar]
  32. Sychrova H., Chevallier M. R. Cloning and sequencing of the Saccharomyces cerevisiae gene LYP1 coding for a lysine-specific permease. Yeast. 1993 Jul;9(7):771–782. doi: 10.1002/yea.320090711. [DOI] [PubMed] [Google Scholar]
  33. Wolfe D., Hester P., Keil R. L. Volatile anesthetic additivity and specificity in Saccharomyces cerevisiae: implications for yeast as a model system to study mechanisms of anestheitc action. Anesthesiology. 1998 Jul;89(1):174–181. doi: 10.1097/00000542-199807000-00024. [DOI] [PubMed] [Google Scholar]
  34. Wolfe D., Reiner T., Keeley J. L., Pizzini M., Keil R. L. Ubiquitin metabolism affects cellular response to volatile anesthetics in yeast. Mol Cell Biol. 1999 Dec;19(12):8254–8262. doi: 10.1128/mcb.19.12.8254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yashiroda H., Oguchi T., Yasuda Y., Toh-E A., Kikuchi Y. Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Jul;16(7):3255–3263. doi: 10.1128/mcb.16.7.3255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yudkoff M. Brain metabolism of branched-chain amino acids. Glia. 1997 Sep;21(1):92–98. doi: 10.1002/(sici)1098-1136(199709)21:1<92::aid-glia10>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  37. Yudkoff M., Daikhin Y., Lin Z. P., Nissim I., Stern J., Pleasure D., Nissim I. Interrelationships of leucine and glutamate metabolism in cultured astrocytes. J Neurochem. 1994 Mar;62(3):1192–1202. doi: 10.1046/j.1471-4159.1994.62031192.x. [DOI] [PubMed] [Google Scholar]
  38. el-Maghrabi E. A., Eckenhoff R. G. Inhibition of dopamine transport in rat brain synaptosomes by volatile anesthetics. Anesthesiology. 1993 Apr;78(4):750–756. doi: 10.1097/00000542-199304000-00019. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES