Skip to main content
Genetics logoLink to Genetics
. 2002 Jul;161(3):1197–1208. doi: 10.1093/genetics/161.3.1197

Temperature-sensitive paralytic mutants are enriched for those causing neurodegeneration in Drosophila.

Michael J Palladino 1, Tricia J Hadley 1, Barry Ganetzky 1
PMCID: PMC1462168  PMID: 12136022

Abstract

Age-dependent neurodegeneration is a pathological condition found in many metazoans. Despite the biological and medical significance of this condition, the cellular and molecular mechanisms underlying neurodegeneration are poorly understood. The availability of a large collection of mutants exhibiting neurodegeneration will provide a valuable resource to elucidate these mechanisms. We have developed an effective screen for isolating neurodegeneration mutants in Drosophila. This screen is based on the observation that neuronal dysfunction, which leads to observable behavioral phenotypes, is often associated with neurodegeneration. Thus, we used a secondary histological screen to examine a collection of mutants originally isolated on the basis of conditional paralytic phenotypes. Using this strategy, we have identified 15 mutations affecting at least nine loci that cause gross neurodegenerative pathology. Here, we present a genetic, behavioral, and anatomical analysis of vacuous (vacu), the first of these mutants to be characterized, and an overview of other mutants isolated in the screen. vacu is a recessive mutation located cytologically at 85D-E that causes locomotor defects in both larvae and adults as well as neuronal hyperactivity. In addition, vacu exhibits extensive age-dependent neurodegeneration throughout the central nervous system. We also identified mutations in at least eight other loci that showed significant levels of neurodegeneration with a diverse array of neuropathological phenotypes. These results demonstrate the effectiveness of our screen in identifying mutations causing neurodegeneration. Further studies of vacu and the other neurodegenerative mutants isolated should ultimately help dissect the biochemical pathways leading to neurodegeneration.

Full Text

The Full Text of this article is available as a PDF (479.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson N. S., Robertson G. A., Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science. 1991 Aug 2;253(5019):551–555. doi: 10.1126/science.1857984. [DOI] [PubMed] [Google Scholar]
  2. Benzer S. Genetic dissection of behavior. Sci Am. 1973 Dec;229(6):24–37. doi: 10.1038/scientificamerican1273-24. [DOI] [PubMed] [Google Scholar]
  3. Buchanan R. L., Benzer S. Defective glia in the Drosophila brain degeneration mutant drop-dead. Neuron. 1993 May;10(5):839–850. doi: 10.1016/0896-6273(93)90200-b. [DOI] [PubMed] [Google Scholar]
  4. Coombe P. E., Heisenberg M. The structural brain mutant Vacuolar medulla of Drosophila melanogaster with specific behavioral defects and cell degeneration in the adult. J Neurogenet. 1986 May;3(3):135–158. doi: 10.3109/01677068609106845. [DOI] [PubMed] [Google Scholar]
  5. Elkins T., Ganetzky B., Wu C. F. A Drosophila mutation that eliminates a calcium-dependent potassium current. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8415–8419. doi: 10.1073/pnas.83.21.8415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feany M. B. Studying human neurodegenerative diseases in flies and worms. J Neuropathol Exp Neurol. 2000 Oct;59(10):847–856. doi: 10.1093/jnen/59.10.847. [DOI] [PubMed] [Google Scholar]
  7. Fletcher C. F., Lutz C. M., O'Sullivan T. N., Shaughnessy J. D., Jr, Hawkes R., Frankel W. N., Copeland N. G., Jenkins N. A. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell. 1996 Nov 15;87(4):607–617. doi: 10.1016/s0092-8674(00)81381-1. [DOI] [PubMed] [Google Scholar]
  8. Fortini M. E., Bonini N. M. Modeling human neurodegenerative diseases in Drosophila: on a wing and a prayer. Trends Genet. 2000 Apr;16(4):161–167. doi: 10.1016/s0168-9525(99)01939-3. [DOI] [PubMed] [Google Scholar]
  9. Goedert M. The significance of tau and alpha-synuclein inclusions in neurodegenerative diseases. Curr Opin Genet Dev. 2001 Jun;11(3):343–351. doi: 10.1016/s0959-437x(00)00200-8. [DOI] [PubMed] [Google Scholar]
  10. Hall D. H., Gu G., García-Añoveros J., Gong L., Chalfie M., Driscoll M. Neuropathology of degenerative cell death in Caenorhabditis elegans. J Neurosci. 1997 Feb 1;17(3):1033–1045. doi: 10.1523/JNEUROSCI.17-03-01033.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heintz N., Zoghbi H. Y. Insights from mouse models into the molecular basis of neurodegeneration. Annu Rev Physiol. 2000;62:779–802. doi: 10.1146/annurev.physiol.62.1.779. [DOI] [PubMed] [Google Scholar]
  12. Hotta Y., Benzer S. Abnormal electroretinograms in visual mutants of Drosophila. Nature. 1969 Apr 26;222(5191):354–356. doi: 10.1038/222354a0. [DOI] [PubMed] [Google Scholar]
  13. Jackson G. R., Salecker I., Dong X., Yao X., Arnheim N., Faber P. W., MacDonald M. E., Zipursky S. L. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron. 1998 Sep;21(3):633–642. doi: 10.1016/s0896-6273(00)80573-5. [DOI] [PubMed] [Google Scholar]
  14. Kazemi-Esfarjani P., Benzer S. Genetic suppression of polyglutamine toxicity in Drosophila. Science. 2000 Mar 10;287(5459):1837–1840. doi: 10.1126/science.287.5459.1837. [DOI] [PubMed] [Google Scholar]
  15. Kretzschmar D., Hasan G., Sharma S., Heisenberg M., Benzer S. The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J Neurosci. 1997 Oct 1;17(19):7425–7432. doi: 10.1523/JNEUROSCI.17-19-07425.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuebler D., Tanouye M. A. Modifications of seizure susceptibility in Drosophila. J Neurophysiol. 2000 Feb;83(2):998–1009. doi: 10.1152/jn.2000.83.2.998. [DOI] [PubMed] [Google Scholar]
  17. Kuebler D., Zhang H., Ren X., Tanouye M. A. Genetic suppression of seizure susceptibility in Drosophila. J Neurophysiol. 2001 Sep;86(3):1211–1225. doi: 10.1152/jn.2001.86.3.1211. [DOI] [PubMed] [Google Scholar]
  18. Leist M., Nicotera P. Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res. 1998 Mar 15;239(2):183–201. doi: 10.1006/excr.1997.4026. [DOI] [PubMed] [Google Scholar]
  19. Littleton J. T., Chapman E. R., Kreber R., Garment M. B., Carlson S. D., Ganetzky B. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron. 1998 Aug;21(2):401–413. doi: 10.1016/s0896-6273(00)80549-8. [DOI] [PubMed] [Google Scholar]
  20. Littleton J. T., Pallanck L., Ganetzky B. Mechanisms of neurotransmitter release. Int Rev Neurobiol. 1999;43:139–161. doi: 10.1016/s0074-7742(08)60544-9. [DOI] [PubMed] [Google Scholar]
  21. Loughney K., Kreber R., Ganetzky B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell. 1989 Sep 22;58(6):1143–1154. doi: 10.1016/0092-8674(89)90512-6. [DOI] [PubMed] [Google Scholar]
  22. Maccioni R. B., Muñoz J. P., Barbeito L. The molecular bases of Alzheimer's disease and other neurodegenerative disorders. Arch Med Res. 2001 Sep-Oct;32(5):367–381. doi: 10.1016/s0188-4409(01)00316-2. [DOI] [PubMed] [Google Scholar]
  23. Min K. T., Benzer S. Preventing neurodegeneration in the Drosophila mutant bubblegum. Science. 1999 Jun 18;284(5422):1985–1988. doi: 10.1126/science.284.5422.1985. [DOI] [PubMed] [Google Scholar]
  24. Min K. T., Benzer S. Spongecake and eggroll: two hereditary diseases in Drosophila resemble patterns of human brain degeneration. Curr Biol. 1997 Nov 1;7(11):885–888. doi: 10.1016/s0960-9822(06)00378-2. [DOI] [PubMed] [Google Scholar]
  25. Murtomäki S., Trenkner E., Wright J. M., Saksela O., Liesi P. Increased proteolytic activity of the granule neurons may contribute to neuronal death in the weaver mouse cerebellum. Dev Biol. 1995 Apr;168(2):635–648. doi: 10.1006/dbio.1995.1108. [DOI] [PubMed] [Google Scholar]
  26. Mutsuddi M., Nambu J. R. Neural disease: Drosophila degenerates for a good cause. Curr Biol. 1998 Nov 5;8(22):R809–R811. doi: 10.1016/s0960-9822(07)00506-4. [DOI] [PubMed] [Google Scholar]
  27. Norman D. J., Feng L., Cheng S. S., Gubbay J., Chan E., Heintz N. The lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development. 1995 Apr;121(4):1183–1193. doi: 10.1242/dev.121.4.1183. [DOI] [PubMed] [Google Scholar]
  28. Pak W. L., Grossfield J., White N. V. Nonphototactic mutants in a study of vision of Drosophila. Nature. 1969 Apr 26;222(5191):351–354. doi: 10.1038/222351a0. [DOI] [PubMed] [Google Scholar]
  29. Palladino M. J., Keegan L. P., O'Connell M. A., Reenan R. A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell. 2000 Aug 18;102(4):437–449. doi: 10.1016/s0092-8674(00)00049-0. [DOI] [PubMed] [Google Scholar]
  30. Pavlidis P., Tanouye M. A. Seizures and failures in the giant fiber pathway of Drosophila bang-sensitive paralytic mutants. J Neurosci. 1995 Aug;15(8):5810–5819. doi: 10.1523/JNEUROSCI.15-08-05810.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Titus S. A., Warmke J. W., Ganetzky B. The Drosophila erg K+ channel polypeptide is encoded by the seizure locus. J Neurosci. 1997 Feb 1;17(3):875–881. doi: 10.1523/JNEUROSCI.17-03-00875.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Warrick J. M., Chan H. Y., Gray-Board G. L., Chai Y., Paulson H. L., Bonini N. M. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet. 1999 Dec;23(4):425–428. doi: 10.1038/70532. [DOI] [PubMed] [Google Scholar]
  33. Warrick J. M., Paulson H. L., Gray-Board G. L., Bui Q. T., Fischbeck K. H., Pittman R. N., Bonini N. M. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell. 1998 Jun 12;93(6):939–949. doi: 10.1016/s0092-8674(00)81200-3. [DOI] [PubMed] [Google Scholar]
  34. Wittmann C. W., Wszolek M. F., Shulman J. M., Salvaterra P. M., Lewis J., Hutton M., Feany M. B. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science. 2001 Jun 14;293(5530):711–714. doi: 10.1126/science.1062382. [DOI] [PubMed] [Google Scholar]
  35. Wu C. F., Ganetzky B., Jan L. Y., Jan Y. N., Benzer S. A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4047–4051. doi: 10.1073/pnas.75.8.4047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zuo J., De Jager P. L., Takahashi K. A., Jiang W., Linden D. J., Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997 Aug 21;388(6644):769–773. doi: 10.1038/42009. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES