Skip to main content
Genetics logoLink to Genetics
. 2002 Jul;161(3):1235–1246. doi: 10.1093/genetics/161.3.1235

Dominant alleles of the basic helix-loop-helix transcription factor ATR2 activate stress-responsive genes in Arabidopsis.

Gromoslaw A Smolen 1, Laura Pawlowski 1, Sharon E Wilensky 1, Judith Bender 1
PMCID: PMC1462177  PMID: 12136026

Abstract

Members of the R/B basic helix-loop-helix (bHLH) family of plant transcription factors are involved in a variety of growth and differentiation processes. We isolated a dominant mutation in an R/B-related bHLH transcription factor in the course of studying Arabidopsis tryptophan pathway regulation. This mutant, atr2D, displayed increased expression of several tryptophan genes as well as a subset of other stress-responsive genes. The atr2D mutation creates an aspartate to asparagine change at a position that is highly conserved in R/B factors. Substitutions of other residues with uncharged side chains at this position also conferred dominant phenotypes. Moreover, overexpression of mutant atr2D, but not wild-type ATR2, conferred pleiotropic effects, including reduced size, dark pigmentation, and sterility. Therefore, atr2D is likely to be an altered-function allele that identifies a key regulatory site in the R/B factor coding sequence. Double-mutant analysis with atr1D, an overexpression allele of the ATR1 Myb factor previously isolated in tryptophan regulation screens, showed that atr2D and atr1D have additive effects on tryptophan regulation and are likely to act through distinct mechanisms to activate tryptophan genes. The dominant atr mutations thus provide tools for altering tryptophan metabolism in plants.

Full Text

The Full Text of this article is available as a PDF (315.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosokawa D., Shinozaki K. Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell. 1997 Oct;9(10):1859–1868. doi: 10.1105/tpc.9.10.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bak S., Tax F. E., Feldmann K. A., Galbraith D. W., Feyereisen R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell. 2001 Jan;13(1):101–111. doi: 10.1105/tpc.13.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell E., Mullet J. E. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol. 1993 Dec;103(4):1133–1137. doi: 10.1104/pp.103.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bender J., Fink G. R. A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5655–5660. doi: 10.1073/pnas.95.10.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berlyn M. B., Last R. L., Fink G. R. A gene encoding the tryptophan synthase beta subunit of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4604–4608. doi: 10.1073/pnas.86.12.4604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caligiuri M. G., Bauerle R. Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium. Evidence for an amino-terminal regulatory site. J Biol Chem. 1991 May 5;266(13):8328–8335. [PubMed] [Google Scholar]
  8. Clarke J. D., Volko S. M., Ledford H., Ausubel F. M., Dong X. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in arabidopsis. Plant Cell. 2000 Nov;12(11):2175–2190. doi: 10.1105/tpc.12.11.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clough S. J., Bent A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998 Dec;16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x. [DOI] [PubMed] [Google Scholar]
  10. Frey M., Chomet P., Glawischnig E., Stettner C., Grün S., Winklmair A., Eisenreich W., Bacher A., Meeley R. B., Briggs S. P. Analysis of a chemical plant defense mechanism in grasses. Science. 1997 Aug 1;277(5326):696–699. doi: 10.1126/science.277.5326.696. [DOI] [PubMed] [Google Scholar]
  11. Gella F. J., Olivella T., Gener J., Galimany R., Castiñeiras M. J. Enzymic determination of glucose with SMAC: adaption of the dichlorophenol/ aminophenazone chromogen. J Automat Chem. 1981;3(3):155–157. doi: 10.1155/S1463924681000436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goff S. A., Cone K. C., Chandler V. L. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev. 1992 May;6(5):864–875. doi: 10.1101/gad.6.5.864. [DOI] [PubMed] [Google Scholar]
  13. Hansen C. H., Du L., Naur P., Olsen C. E., Axelsen K. B., Hick A. J., Pickett J. A., Halkier B. A. CYP83b1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J Biol Chem. 2001 May 1;276(27):24790–24796. doi: 10.1074/jbc.M102637200. [DOI] [PubMed] [Google Scholar]
  14. Hull A. K., Vij R., Celenza J. L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2379–2384. doi: 10.1073/pnas.040569997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  16. Kreps J. A., Ponappa T., Dong W., Town C. D. Molecular basis of alpha-methyltryptophan resistance in amt-1, a mutant of Arabidopsis thaliana with altered tryptophan metabolism. Plant Physiol. 1996 Apr;110(4):1159–1165. doi: 10.1104/pp.110.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  18. Kutchan T. M. Alkaloid Biosynthesis[mdash]The Basis for Metabolic Engineering of Medicinal Plants. Plant Cell. 1995 Jul;7(7):1059–1070. doi: 10.1105/tpc.7.7.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Melquist S., Luff B., Bender J. Arabidopsis PAI gene arrangements, cytosine methylation and expression. Genetics. 1999 Sep;153(1):401–413. doi: 10.1093/genetics/153.1.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Minet M., Dufour M. E., Lacroute F. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J. 1992 May;2(3):417–422. doi: 10.1111/j.1365-313x.1992.00417.x. [DOI] [PubMed] [Google Scholar]
  21. Miozzari G., Niederberger P., Hütter R. Action of tryptophan analogues in Saccharomyces cerevisiae. Arch Microbiol. 1977 Dec 15;115(3):307–316. doi: 10.1007/BF00446457. [DOI] [PubMed] [Google Scholar]
  22. Neff M. M., Neff J. D., Chory J., Pepper A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 1998 May;14(3):387–392. doi: 10.1046/j.1365-313x.1998.00124.x. [DOI] [PubMed] [Google Scholar]
  23. Niyogi K. K., Fink G. R. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway. Plant Cell. 1992 Jun;4(6):721–733. doi: 10.1105/tpc.4.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oppenheimer D. G., Herman P. L., Sivakumaran S., Esch J., Marks M. D. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell. 1991 Nov 1;67(3):483–493. doi: 10.1016/0092-8674(91)90523-2. [DOI] [PubMed] [Google Scholar]
  25. Payne C. T., Zhang F., Lloyd A. M. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1. Genetics. 2000 Nov;156(3):1349–1362. doi: 10.1093/genetics/156.3.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Penninckx I. A., Eggermont K., Terras F. R., Thomma B. P., De Samblanx G. W., Buchala A., Métraux J. P., Manners J. M., Broekaert W. F. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell. 1996 Dec;8(12):2309–2323. doi: 10.1105/tpc.8.12.2309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Penninckx I. A., Eggermont K., Terras F. R., Thomma B. P., De Samblanx G. W., Buchala A., Métraux J. P., Manners J. M., Broekaert W. F. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell. 1996 Dec;8(12):2309–2323. doi: 10.1105/tpc.8.12.2309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Purugganan M. D., Wessler S. R. Molecular evolution of the plant R regulatory gene family. Genetics. 1994 Nov;138(3):849–854. doi: 10.1093/genetics/138.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Quattrocchio F., Wing J., van der Woude K., Souer E., de Vetten N., Mol J., Koes R. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell. 1999 Aug;11(8):1433–1444. doi: 10.1105/tpc.11.8.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rose A. B., Casselman A. L., Last R. L. A Phosphoribosylanthranilate Transferase Gene Is Defective in Blue Fluorescent Arabidopsis thaliana Tryptophan Mutants. Plant Physiol. 1992 Oct;100(2):582–592. doi: 10.1104/pp.100.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smolen Gromoslaw, Bender Judith. Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics. 2002 Jan;160(1):323–332. doi: 10.1093/genetics/160.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spelt C., Quattrocchio F., Mol J. N., Koes R. anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell. 2000 Sep;12(9):1619–1632. doi: 10.1105/tpc.12.9.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vance V., Vaucheret H. RNA silencing in plants--defense and counterdefense. Science. 2001 Jun 22;292(5525):2277–2280. doi: 10.1126/science.1061334. [DOI] [PubMed] [Google Scholar]
  34. Walker A. R., Davison P. A., Bolognesi-Winfield A. C., James C. M., Srinivasan N., Blundell T. L., Esch J. J., Marks M. D., Gray J. C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 1999 Jul;11(7):1337–1350. doi: 10.1105/tpc.11.7.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhao J., Last R. L. Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell. 1996 Dec;8(12):2235–2244. doi: 10.1105/tpc.8.12.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhao J., Williams C. C., Last R. L. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell. 1998 Mar;10(3):359–370. doi: 10.1105/tpc.10.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. de Vetten N., Quattrocchio F., Mol J., Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev. 1997 Jun 1;11(11):1422–1434. doi: 10.1101/gad.11.11.1422. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES