Skip to main content
Genetics logoLink to Genetics
. 2002 Jul;161(3):1077–1087. doi: 10.1093/genetics/161.3.1077

Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus: impact of genomic rearrangements associated with electroporation of DNA.

Arnaud Firon 1, Anne Beauvais 1, Jean-Paul Latgé 1, Elisabeth Couvé 1, Marie-Claire Grosjean-Cournoyer 1, Christophe D'Enfert 1
PMCID: PMC1462181  PMID: 12136012

Abstract

We have evaluated the usefulness of parasexual genetics in the identification of genes essential for the growth of the human fungal pathogen Aspergillus fumigatus. First, essentiality of the A. fumigatus AfFKS1 gene, encoding the catalytic subunit of the beta-(1,3)-glucan synthase complex, was assessed by inactivating one allele of AfFKS1 in a diploid strain of A. fumigatus obtained using adequate selectable markers in spore color and nitrate utilization pathways and by performing haploidization under conditions that select for the occurrence of the disrupted allele. Haploid progeny could not be obtained, demonstrating that AfFKS1 and, hence, beta-(1,3)-glucan synthesis are essential in A. fumigatus. Second, random heterozygous insertional mutants were generated by electroporation of diploid conidia with a heterologous plasmid. A total of 4.5% of the transformants failed to produce haploid progeny on selective medium. Genomic analysis of these heterozygous diploids led in particular to the identification of an essential A. fumigatus gene encoding an SMC-like protein resembling one in Schizosacccharomyces pombe involved in chromosome condensation and cohesion. However, significant plasmid and genomic DNA rearrangements were observed at many of the identified genomic loci where plasmid integration had occurred, thus suggesting that the use of electroporation to build libraries of A. fumigatus insertional mutants has relatively limited value and cannot be used in an exhaustive search of essential genes.

Full Text

The Full Text of this article is available as a PDF (261.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Asch D. K., Frederick G., Kinsey J. A., Perkins D. D. Analysis of junction sequences resulting from integration at nonhomologous loci in Neurospora crassa. Genetics. 1992 Apr;130(4):737–748. doi: 10.1093/genetics/130.4.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barton R. C., Scherer S. Induced chromosome rearrangements and morphologic variation in Candida albicans. J Bacteriol. 1994 Feb;176(3):756–763. doi: 10.1128/jb.176.3.756-763.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beauvais A., Bruneau J. M., Mol P. C., Buitrago M. J., Legrand R., Latgé J. P. Glucan synthase complex of Aspergillus fumigatus. J Bacteriol. 2001 Apr;183(7):2273–2279. doi: 10.1128/JB.183.7.2273-2279.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borgia P. T., Dodge C. L., Eagleton L. E., Adams T. H. Bidirectional gene transfer between Aspergillus fumigatus and Aspergillus nidulans. FEMS Microbiol Lett. 1994 Oct 1;122(3):227–231. doi: 10.1111/j.1574-6968.1994.tb07172.x. [DOI] [PubMed] [Google Scholar]
  6. Bradshaw R. E., Bird D. M., Brown S., Gardiner R. E., Hirst P. Cytochrome c is not essential for viability of the fungus Aspergillus nidulans. Mol Genet Genomics. 2001 Sep;266(1):48–55. doi: 10.1007/s004380100517. [DOI] [PubMed] [Google Scholar]
  7. Brown J. S., Aufauvre-Brown A., Brown J., Jennings J. M., Arst H., Jr, Holden D. W. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol. 2000 Jun;36(6):1371–1380. doi: 10.1046/j.1365-2958.2000.01953.x. [DOI] [PubMed] [Google Scholar]
  8. Brown J. S., Aufauvre-Brown A., Holden D. W. Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet. 1998 Aug;259(3):327–335. doi: 10.1007/s004380050819. [DOI] [PubMed] [Google Scholar]
  9. Brown J. S., Holden D. W. Insertional mutagenesis of pathogenic fungi. Curr Opin Microbiol. 1998 Aug;1(4):390–394. doi: 10.1016/s1369-5274(98)80054-4. [DOI] [PubMed] [Google Scholar]
  10. Chun K. T., Edenberg H. J., Kelley M. R., Goebl M. G. Rapid amplification of uncharacterized transposon-tagged DNA sequences from genomic DNA. Yeast. 1997 Mar 15;13(3):233–240. doi: 10.1002/(SICI)1097-0061(19970315)13:3<233::AID-YEA88>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  11. Clutterbuck A. J. Sexual and parasexual genetics of Aspergillus species. Biotechnology. 1992;23:3–18. [PubMed] [Google Scholar]
  12. Cormack B. P., Falkow S. Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics. 1999 Mar;151(3):979–987. doi: 10.1093/genetics/151.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cove D. J. Chlorate toxicity in Aspergillus nidulans. Studies of mutants altered in nitrate assimilation. Mol Gen Genet. 1976 Jul 23;146(2):147–159. doi: 10.1007/BF00268083. [DOI] [PubMed] [Google Scholar]
  14. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  15. De Backer M. D., Nelissen B., Logghe M., Viaene J., Loonen I., Vandoninck S., de Hoogt R., Dewaele S., Simons F. A., Verhasselt P. An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans. Nat Biotechnol. 2001 Mar;19(3):235–241. doi: 10.1038/85677. [DOI] [PubMed] [Google Scholar]
  16. Ekena K., Stevens T. H. The Saccharomyces cerevisiae MVP1 gene interacts with VPS1 and is required for vacuolar protein sorting. Mol Cell Biol. 1995 Mar;15(3):1671–1678. doi: 10.1128/mcb.15.3.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fierro F., Martín J. F. Molecular mechanisms of chromosomal rearrangement in fungi. Crit Rev Microbiol. 1999;25(1):1–17. doi: 10.1080/10408419991299185. [DOI] [PubMed] [Google Scholar]
  18. Fousteri M. I., Lehmann A. R. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 2000 Apr 3;19(7):1691–1702. doi: 10.1093/emboj/19.7.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Girardin H., Latgé J. P., Srikantha T., Morrow B., Soll D. R. Development of DNA probes for fingerprinting Aspergillus fumigatus. J Clin Microbiol. 1993 Jun;31(6):1547–1554. doi: 10.1128/jcm.31.6.1547-1554.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hanahan D., Jessee J., Bloom F. R. Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 1991;204:63–113. doi: 10.1016/0076-6879(91)04006-a. [DOI] [PubMed] [Google Scholar]
  21. Hastie A. C. Benlate-induced instability of Aspergillus diploids. Nature. 1970 May 23;226(5247):771–771. doi: 10.1038/226771a0. [DOI] [PubMed] [Google Scholar]
  22. Hirano T. SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? Genes Dev. 1999 Jan 1;13(1):11–19. doi: 10.1101/gad.13.1.11. [DOI] [PubMed] [Google Scholar]
  23. Jansen G., Bühring F., Hollenberg C. P., Ramezani Rad M. Mutations in the SAM domain of STE50 differentially influence the MAPK-mediated pathways for mating, filamentous growth and osmotolerance in Saccharomyces cerevisiae. Mol Genet Genomics. 2001 Mar;265(1):102–117. doi: 10.1007/s004380000394. [DOI] [PubMed] [Google Scholar]
  24. Kistler H. C., Benny U. Autonomously replicating plasmids and chromosome rearrangement during transformation of Nectria haematococca. Gene. 1992 Aug 1;117(1):81–89. doi: 10.1016/0378-1119(92)90493-9. [DOI] [PubMed] [Google Scholar]
  25. Langin T., Capy P., Daboussi M. J. The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet. 1995 Jan 6;246(1):19–28. doi: 10.1007/BF00290129. [DOI] [PubMed] [Google Scholar]
  26. Latgé J. P. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999 Apr;12(2):310–350. doi: 10.1128/cmr.12.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Latgé J. P. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 2001 Aug;9(8):382–389. doi: 10.1016/s0966-842x(01)02104-7. [DOI] [PubMed] [Google Scholar]
  28. Lehmann A. R., Walicka M., Griffiths D. J., Murray J. M., Watts F. Z., McCready S., Carr A. M. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol Cell Biol. 1995 Dec;15(12):7067–7080. doi: 10.1128/mcb.15.12.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Levadoux W. L., Gregory K. F., Taylor A. Sequential cold-sensitive mutations in Aspergillus fumigatus. II. Analysis by the parasexual cycle. Can J Microbiol. 1981 Mar;27(3):295–303. doi: 10.1139/m81-046. [DOI] [PubMed] [Google Scholar]
  30. Lin S. J., Schranz J., Teutsch S. M. Aspergillosis case-fatality rate: systematic review of the literature. Clin Infect Dis. 2001 Jan 26;32(3):358–366. doi: 10.1086/318483. [DOI] [PubMed] [Google Scholar]
  31. Mazur P., Morin N., Baginsky W., el-Sherbeini M., Clemas J. A., Nielsen J. B., Foor F. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol. 1995 Oct;15(10):5671–5681. doi: 10.1128/mcb.15.10.5671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McNeil M. M., Nash S. L., Hajjeh R. A., Phelan M. A., Conn L. A., Plikaytis B. D., Warnock D. W. Trends in mortality due to invasive mycotic diseases in the United States, 1980-1997. Clin Infect Dis. 2001 Jul 30;33(5):641–647. doi: 10.1086/322606. [DOI] [PubMed] [Google Scholar]
  33. Momany M., Hamer J. E. The Aspergillus nidulans septin encoding gene, aspB, is essential for growth. Fungal Genet Biol. 1997 Feb;21(1):92–100. doi: 10.1006/fgbi.1997.0967. [DOI] [PubMed] [Google Scholar]
  34. Oakley B. R., Rinehart J. E., Mitchell B. L., Oakley C. E., Carmona C., Gray G. L., May G. S. Cloning, mapping and molecular analysis of the pyrG (orotidine-5'-phosphate decarboxylase) gene of Aspergillus nidulans. Gene. 1987;61(3):385–399. doi: 10.1016/0378-1119(87)90201-0. [DOI] [PubMed] [Google Scholar]
  35. Onishi J., Meinz M., Thompson J., Curotto J., Dreikorn S., Rosenbach M., Douglas C., Abruzzo G., Flattery A., Kong L. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 2000 Feb;44(2):368–377. doi: 10.1128/aac.44.2.368-377.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Osmani S. A., May G. S., Morris N. R. Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. J Cell Biol. 1987 Jun;104(6):1495–1504. doi: 10.1083/jcb.104.6.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Perfect J. R. Fungal virulence genes as targets for antifungal chemotherapy. Antimicrob Agents Chemother. 1996 Jul;40(7):1577–1583. doi: 10.1128/aac.40.7.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Perkins D. D., Kinsey J. A., Asch D. K., Frederick G. D. Chromosome rearrangements recovered following transformation of Neurospora crassa. Genetics. 1993 Jul;134(3):729–736. doi: 10.1093/genetics/134.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Prior C., Potier S., Souciet J. L., Sychrova H. Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett. 1996 May 27;387(1):89–93. doi: 10.1016/0014-5793(96)00470-x. [DOI] [PubMed] [Google Scholar]
  40. Reich K. A. The search for essential genes. Res Microbiol. 2000 Jun;151(5):319–324. doi: 10.1016/s0923-2508(00)00153-4. [DOI] [PubMed] [Google Scholar]
  41. Reoyo E., Espeso E. A., Peñalva M. A., Suárez T. The essential Aspergillus nidulans gene pmaA encodes an homologue of fungal plasma membrane H(+)-ATPases. Fungal Genet Biol. 1998 Apr;23(3):288–299. doi: 10.1006/fgbi.1998.1039. [DOI] [PubMed] [Google Scholar]
  42. Ross-Macdonald P., Coelho P. S., Roemer T., Agarwal S., Kumar A., Jansen R., Cheung K. H., Sheehan A., Symoniatis D., Umansky L. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature. 1999 Nov 25;402(6760):413–418. doi: 10.1038/46558. [DOI] [PubMed] [Google Scholar]
  43. STROMNAES O., GARBER E. D. Heterocaryosis and the parasexual cycle in Aspergillus fumigatus. Genetics. 1963 May;48:653–662. doi: 10.1093/genetics/48.5.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schiestl R. H., Dominska M., Petes T. D. Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol. 1993 May;13(5):2697–2705. doi: 10.1128/mcb.13.5.2697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Som T., Kolaparthi V. S. Developmental decisions in Aspergillus nidulans are modulated by Ras activity. Mol Cell Biol. 1994 Aug;14(8):5333–5348. doi: 10.1128/mcb.14.8.5333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Strunnikov A. V., Jessberger R. Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur J Biochem. 1999 Jul;263(1):6–13. doi: 10.1046/j.1432-1327.1999.00509.x. [DOI] [PubMed] [Google Scholar]
  47. Thompson J. R., Douglas C. M., Li W., Jue C. K., Pramanik B., Yuan X., Rude T. H., Toffaletti D. L., Perfect J. R., Kurtz M. A glucan synthase FKS1 homolog in cryptococcus neoformans is single copy and encodes an essential function. J Bacteriol. 1999 Jan;181(2):444–453. doi: 10.1128/jb.181.2.444-453.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Timberlake W. E., Marshall M. A. Genetic regulation of development in Aspergillus nidulans. Trends Genet. 1988 Jun;4(6):162–169. doi: 10.1016/0168-9525(88)90022-4. [DOI] [PubMed] [Google Scholar]
  49. Tkacz J. S., DiDomenico B. Antifungals: what's in the pipeline. Curr Opin Microbiol. 2001 Oct;4(5):540–545. doi: 10.1016/s1369-5274(00)00248-4. [DOI] [PubMed] [Google Scholar]
  50. Weidner G., d'Enfert C., Koch A., Mol P. C., Brakhage A. A. Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5'-monophosphate decarboxylase. Curr Genet. 1998 May;33(5):378–385. doi: 10.1007/s002940050350. [DOI] [PubMed] [Google Scholar]
  51. Xuei X., Skatrud P. L. Molecular karyotype alterations induced by transformation in Aspergillus nidulans are mitotically stable. Curr Genet. 1994 Sep;26(3):225–227. doi: 10.1007/BF00309551. [DOI] [PubMed] [Google Scholar]
  52. d'Enfert C. Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5'-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet. 1996 Jun;30(1):76–82. doi: 10.1007/s002940050103. [DOI] [PubMed] [Google Scholar]
  53. d'Enfert C., Weidner G., Mol P. C., Brakhage A. A. Transformation systems of Aspergillus fumigatus. New tools to investigate fungal virulence. Contrib Microbiol. 1999;2:149–166. doi: 10.1159/000060292. [DOI] [PubMed] [Google Scholar]
  54. de Groot M. J., Bundock P., Hooykaas P. J., Beijersbergen A. G. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 1998 Sep;16(9):839–842. doi: 10.1038/nbt0998-839. [DOI] [PubMed] [Google Scholar]
  55. van Hartingsveldt W., Mattern I. E., van Zeijl C. M., Pouwels P. H., van den Hondel C. A. Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet. 1987 Jan;206(1):71–75. doi: 10.1007/BF00326538. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES