Abstract
As in other eukaryotes, telomeres in Drosophila melanogaster are composed of long arrays of repeated DNA sequences. Remarkably, in D. melanogaster these repeats are produced, not by telomerase, but by successive transpositions of two telomere-specific retrotransposons, HeT-A and TART. These are the only transposable elements known to be completely dedicated to a role in chromosomes, a finding that provides an opportunity for investigating questions about the evolution of telomeres, telomerase, and the transposable elements themselves. Recent studies of D. yakuba revealed the presence of HeT-A elements with precisely the same unusual characteristics as HeT-A(mel) although they had only 55% nucleotide sequence identity. We now report that the second element, TART, is also a telomere component in D. yakuba; thus, these two elements have been evolving together since before the separation of the melanogaster and yakuba species complexes. Like HeT-A(yak), TART(yak) is undergoing concerted sequence evolution, yet they retain the unusual features TART(mel) shares with HeT-A(mel). There are at least two subfamilies of TART(yak) with significantly different sequence and expression. Surprisingly, one subfamily of TART(yak) has >95% sequence identity with a subfamily of TART(mel) and shows similar transcription patterns. As in D. melanogaster, other retrotransposons are excluded from the D. yakuba terminal arrays studied to date.
Full Text
The Full Text of this article is available as a PDF (252.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agudo M., Losada A., Abad J. P., Pimpinelli S., Ripoll P., Villasante A. Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. Nucleic Acids Res. 1999 Aug 15;27(16):3318–3324. doi: 10.1093/nar/27.16.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouhidel K., Terzian C., Pinon H. The full-length transcript of the I factor, a LINE element of Drosophila melanogaster, is a potential bicistronic RNA messenger. Nucleic Acids Res. 1994 Jun 25;22(12):2370–2374. doi: 10.1093/nar/22.12.2370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown E. A., Zhang H., Ping L. H., Lemon S. M. Secondary structure of the 5' nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 1992 Oct 11;20(19):5041–5045. doi: 10.1093/nar/20.19.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J. L., Blasco M. A., Greider C. W. Secondary structure of vertebrate telomerase RNA. Cell. 2000 Mar 3;100(5):503–514. doi: 10.1016/s0092-8674(00)80687-x. [DOI] [PubMed] [Google Scholar]
- Clark J. B., Kidwell M. G. A phylogenetic perspective on P transposable element evolution in Drosophila. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11428–11433. doi: 10.1073/pnas.94.21.11428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danilevskaya O. N., Lowenhaupt K., Pardue M. L. Conserved subfamilies of the Drosophila HeT-A telomere-specific retrotransposon. Genetics. 1998 Jan;148(1):233–242. doi: 10.1093/genetics/148.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danilevskaya O. N., Tan C., Wong J., Alibhai M., Pardue M. L. Unusual features of the Drosophila melanogaster telomere transposable element HeT-A are conserved in Drosophila yakuba telomere elements. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3770–3775. doi: 10.1073/pnas.95.7.3770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danilevskaya O. N., Traverse K. L., Hogan N. C., DeBaryshe P. G., Pardue M. L. The two Drosophila telomeric transposable elements have very different patterns of transcription. Mol Cell Biol. 1999 Jan;19(1):873–881. doi: 10.1128/mcb.19.1.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danilevskaya O., Lofsky A., Kurenova E. V., Pardue M. L. The Y chromosome of Drosophila melanogaster contains a distinctive subclass of Het-A-related repeats. Genetics. 1993 Jun;134(2):531–543. doi: 10.1093/genetics/134.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Gentile K. L., Burke W. D., Eickbush T. H. Multiple lineages of R1 retrotransposable elements can coexist in the rDNA loci of Drosophila. Mol Biol Evol. 2001 Feb;18(2):235–245. doi: 10.1093/oxfordjournals.molbev.a003797. [DOI] [PubMed] [Google Scholar]
- Jacks T. Translational suppression in gene expression in retroviruses and retrotransposons. Curr Top Microbiol Immunol. 1990;157:93–124. doi: 10.1007/978-3-642-75218-6_4. [DOI] [PubMed] [Google Scholar]
- Jordan I. K., Matyunina L. V., McDonald J. F. Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12621–12625. doi: 10.1073/pnas.96.22.12621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahn T., Savitsky M., Georgiev P. Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol. 2000 Oct;20(20):7634–7642. doi: 10.1128/mcb.20.20.7634-7642.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamnert I., Nielsen L., Edström J. E. A concertedly evolving region in Chironomus, unique within the telomere. J Mol Evol. 1998 May;46(5):562–570. doi: 10.1007/pl00006337. [DOI] [PubMed] [Google Scholar]
- Kidwell M. G. Horizontal transfer. Curr Opin Genet Dev. 1992 Dec;2(6):868–873. doi: 10.1016/s0959-437x(05)80109-1. [DOI] [PubMed] [Google Scholar]
- Kumar S., Tamura K., Jakobsen I. B., Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001 Dec;17(12):1244–1245. doi: 10.1093/bioinformatics/17.12.1244. [DOI] [PubMed] [Google Scholar]
- Lowenhaupt K., Rich A., Pardue M. L. Nonrandom distribution of long mono- and dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin, and recombination. Mol Cell Biol. 1989 Mar;9(3):1173–1182. doi: 10.1128/mcb.9.3.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luan D. D., Korman M. H., Jakubczak J. L., Eickbush T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993 Feb 26;72(4):595–605. doi: 10.1016/0092-8674(93)90078-5. [DOI] [PubMed] [Google Scholar]
- McClure M. A., Johnson M. S., Feng D. F., Doolittle R. F. Sequence comparisons of retroviral proteins: relative rates of change and general phylogeny. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2469–2473. doi: 10.1073/pnas.85.8.2469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMillan J. P., Singer M. F. Translation of the human LINE-1 element, L1Hs. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11533–11537. doi: 10.1073/pnas.90.24.11533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pardue M. L., Danilevskaya O. N., Lowenhaupt K., Slot F., Traverse K. L. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 1996 Feb;12(2):48–52. doi: 10.1016/0168-9525(96)81399-0. [DOI] [PubMed] [Google Scholar]
- Pardue M. L., DeBaryshe P. G. Telomeres and telomerase: more than the end of the line. Chromosoma. 1999 May;108(2):73–82. doi: 10.1007/s004120050354. [DOI] [PubMed] [Google Scholar]
- Pérez-González C. E., Eickbush T. H. Dynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans. Genetics. 2001 Aug;158(4):1557–1567. doi: 10.1093/genetics/158.4.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosén M., Edström J. DNA structures common for chironomid telomeres terminating with complex repeats. Insect Mol Biol. 2000 Jun;9(3):341–347. doi: 10.1046/j.1365-2583.2000.00193.x. [DOI] [PubMed] [Google Scholar]
- Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7(6):449–460. doi: 10.1023/a:1009297729547. [DOI] [PubMed] [Google Scholar]
- Schumann G., Zündorf I., Hofmann J., Marschalek R., Dingermann T. Internally located and oppositely oriented polymerase II promoters direct convergent transcription of a LINE-like retroelement, the Dictyostelium repetitive element, from Dictyostelium discoideum. Mol Cell Biol. 1994 May;14(5):3074–3084. doi: 10.1128/mcb.14.5.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siriaco Giorgia M., Cenci Giovanni, Haoudi Abdelali, Champion Larry E., Zhou Chun, Gatti Maurizio, Mason James M. Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. Genetics. 2002 Jan;160(1):235–245. doi: 10.1093/genetics/160.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinemann M., Steinemann S. Common mechanisms of Y chromosome evolution. Genetica. 2000;109(1-2):105–111. doi: 10.1023/a:1026584016524. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traverse K. L., Pardue M. L. Studies of He-T DNA sequences in the pericentric regions of Drosophila chromosomes. Chromosoma. 1989 Jan;97(4):261–271. doi: 10.1007/BF00371965. [DOI] [PubMed] [Google Scholar]