Skip to main content
Genetics logoLink to Genetics
. 2002 Jul;161(3):945–956. doi: 10.1093/genetics/161.3.945

Evidence that selected amplification of a bacterial lac frameshift allele stimulates Lac(+) reversion (adaptive mutation) with or without general hypermutability.

E Susan Slechta 1, Jing Liu 1, Dan I Andersson 1, John R Roth 1
PMCID: PMC1462195  PMID: 12136002

Abstract

In the genetic system of Cairns and Foster, a nongrowing population of an E. coli lac frameshift mutant appears to specifically accumulate Lac(+) revertants when starved on medium including lactose (adaptive mutation). This behavior has been attributed to stress-induced general mutagenesis in a subpopulation of starved cells (the hypermutable state model). We have suggested that, on the contrary, stress has no direct effect on mutability but favors only growth of cells that amplify their leaky mutant lac region (the amplification mutagenesis model). Selection enhances reversion primarily by increasing the mutant lac copy number within each developing clone on the selection plate. The observed general mutagenesis is attributed to a side effect of growth with an amplification-induction of SOS by DNA fragments released from a tandem array of lac copies. Here we show that the S. enterica version of the Cairns system shows SOS-dependent general mutagenesis and behaves in every way like the original E. coli system. In both systems, lac revertants are mutagenized during selection. Eliminating the 35-fold increase in mutation rate reduces revertant number only 2- to 4-fold. This discrepancy is due to continued growth of amplification cells until some clones manage to revert without mutagenesis solely by increasing their lac copy number. Reversion in the absence of mutagenesis is still dependent on RecA function, as expected if it depends on lac amplification (a recombination-dependent process). These observations support the amplification mutagenesis model.

Full Text

The Full Text of this article is available as a PDF (130.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berkowitz D., Hushon J. M., Whitfield H. J., Jr, Roth J., Ames B. N. Procedure for identifying nonsense mutations. J Bacteriol. 1968 Jul;96(1):215–220. doi: 10.1128/jb.96.1.215-220.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bull H. J., Lombardo M. J., Rosenberg S. M. Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8334–8341. doi: 10.1073/pnas.151009798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  4. Datsenko K. A., Wanner B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640–6645. doi: 10.1073/pnas.120163297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foster P. L. Adaptive mutation: implications for evolution. Bioessays. 2000 Dec;22(12):1067–1074. doi: 10.1002/1521-1878(200012)22:12<1067::AID-BIES4>3.0.CO;2-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foster P. L. Are adaptive mutations due to a decline in mismatch repair? The evidence is lacking. Mutat Res. 1999 Mar;436(2):179–184. doi: 10.1016/s1383-5742(98)00023-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foster P. L., Cairns J. Mechanisms of directed mutation. Genetics. 1992 Aug;131(4):783–789. doi: 10.1093/genetics/131.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foster P. L. Directed mutation: between unicorns and goats. J Bacteriol. 1992 Mar;174(6):1711–1716. doi: 10.1128/jb.174.6.1711-1716.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foster P. L. Mechanisms of stationary phase mutation: a decade of adaptive mutation. Annu Rev Genet. 1999;33:57–88. doi: 10.1146/annurev.genet.33.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foster P. L. Population dynamics of a Lac- strain of Escherichia coli during selection for lactose utilization. Genetics. 1994 Oct;138(2):253–261. doi: 10.1093/genetics/138.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foster P. L., Rosche W. A. Increased episomal replication accounts for the high rate of adaptive mutation in recD mutants of Escherichia coli. Genetics. 1999 May;152(1):15–30. doi: 10.1093/genetics/152.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Foster P. L., Rosche W. A. Mechanisms of mutation in nondividing cells. Insights from the study of adaptive mutation in Escherichia coli. Ann N Y Acad Sci. 1999 May 18;870:133–145. doi: 10.1111/j.1749-6632.1999.tb08873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foster P. L., Trimarchi J. M. Adaptive reversion of an episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5487–5490. doi: 10.1073/pnas.92.12.5487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Foster P. L., Trimarchi J. M. Conjugation is not required for adaptive reversion of an episomal frameshift mutation in Escherichia coli. J Bacteriol. 1995 Nov;177(22):6670–6671. doi: 10.1128/jb.177.22.6670-6671.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Foster P. L., Trimarchi J. M., Maurer R. A. Two enzymes, both of which process recombination intermediates, have opposite effects on adaptive mutation in Escherichia coli. Genetics. 1996 Jan;142(1):25–37. doi: 10.1093/genetics/142.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galitski T., Roth J. R. A search for a general phenomenon of adaptive mutability. Genetics. 1996 Jun;143(2):645–659. doi: 10.1093/genetics/143.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Galitski T., Roth J. R. Evidence that F plasmid transfer replication underlies apparent adaptive mutation. Science. 1995 Apr 21;268(5209):421–423. doi: 10.1126/science.7716546. [DOI] [PubMed] [Google Scholar]
  18. Ginsburg H., Edmiston S. H., Harper J., Mount D. W. Isolation and characterization of an operator-constitutive mutation in the recA gene of E. coli K-12. Mol Gen Genet. 1982;187(1):4–11. doi: 10.1007/BF00384376. [DOI] [PubMed] [Google Scholar]
  19. Godoy V. G., Fox M. S. Transposon stability and a role for conjugational transfer in adaptive mutability. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7393–7398. doi: 10.1073/pnas.130186597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Godoy V. G., Gizatullin F. S., Fox M. S. Some features of the mutability of bacteria during nonlethal selection. Genetics. 2000 Jan;154(1):49–59. doi: 10.1093/genetics/154.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gutnick D., Calvo J. M., Klopotowski T., Ames B. N. Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J Bacteriol. 1969 Oct;100(1):215–219. doi: 10.1128/jb.100.1.215-219.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hall B. G. On the specificity of adaptive mutations. Genetics. 1997 Jan;145(1):39–44. doi: 10.1093/genetics/145.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hall B. G. Selection-induced mutations. Curr Opin Genet Dev. 1992 Dec;2(6):943–946. doi: 10.1016/s0959-437x(05)80120-0. [DOI] [PubMed] [Google Scholar]
  24. Hall B. G. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics. 1990 Sep;126(1):5–16. doi: 10.1093/genetics/126.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Winkler M. E., Rosenberg S. M. Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev. 1997 Sep 15;11(18):2426–2437. doi: 10.1101/gad.11.18.2426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Harris R. S., Ross K. J., Rosenberg S. M. Opposing roles of the holliday junction processing systems of Escherichia coli in recombination-dependent adaptive mutation. Genetics. 1996 Mar;142(3):681–691. doi: 10.1093/genetics/142.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hastings P. J., Bull H. J., Klump J. R., Rosenberg S. M. Adaptive amplification: an inducible chromosomal instability mechanism. Cell. 2000 Nov 22;103(5):723–731. doi: 10.1016/s0092-8674(00)00176-8. [DOI] [PubMed] [Google Scholar]
  28. Hendrickson Heather, Slechta E. Susan, Bergthorsson Ulfar, Andersson Dan I., Roth John R. Amplification-mutagenesis: evidence that "directed" adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc Natl Acad Sci U S A. 2002 Feb 5;99(4):2164–2169. doi: 10.1073/pnas.032680899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kim S. R., Matsui K., Yamada M., Gruz P., Nohmi T. Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol Genet Genomics. 2001 Oct;266(2):207–215. doi: 10.1007/s004380100541. [DOI] [PubMed] [Google Scholar]
  30. LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Markham B. E., Little J. W., Mount D. W. Nucleotide sequence of the lexA gene of Escherichia coli K-12. Nucleic Acids Res. 1981 Aug 25;9(16):4149–4161. doi: 10.1093/nar/9.16.4149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McKenzie G. J., Lee P. L., Lombardo M. J., Hastings P. J., Rosenberg S. M. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell. 2001 Mar;7(3):571–579. doi: 10.1016/s1097-2765(01)00204-0. [DOI] [PubMed] [Google Scholar]
  34. Poteete A. R., Fenton A. C. Lambda red-dependent growth and recombination of phage P22. Virology. 1984 Apr 15;134(1):161–167. doi: 10.1016/0042-6822(84)90281-2. [DOI] [PubMed] [Google Scholar]
  35. Radicella J. P., Park P. U., Fox M. S. Adaptive mutation in Escherichia coli: a role for conjugation. Science. 1995 Apr 21;268(5209):418–420. doi: 10.1126/science.7716545. [DOI] [PubMed] [Google Scholar]
  36. Rosenberg S. M. Evolving responsively: adaptive mutation. Nat Rev Genet. 2001 Jul;2(7):504–515. doi: 10.1038/35080556. [DOI] [PubMed] [Google Scholar]
  37. Slechta E. Susan, Harold Jennifer, Andersson Dan I., Roth John R. The effect of genomic position on reversion of a lac frameshift mutation (lacIZ33) during non-lethal selection (adaptive mutation). Mol Microbiol. 2002 May;44(4):1017–1032. doi: 10.1046/j.1365-2958.2002.02934.x. [DOI] [PubMed] [Google Scholar]
  38. Torkelson J., Harris R. S., Lombardo M. J., Nagendran J., Thulin C., Rosenberg S. M. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 1997 Jun 2;16(11):3303–3311. doi: 10.1093/emboj/16.11.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wagner J., Nohmi T. Escherichia coli DNA polymerase IV mutator activity: genetic requirements and mutational specificity. J Bacteriol. 2000 Aug;182(16):4587–4595. doi: 10.1128/jb.182.16.4587-4595.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Whoriskey S. K., Nghiem V. H., Leong P. M., Masson J. M., Miller J. H. Genetic rearrangements and gene amplification in Escherichia coli: DNA sequences at the junctures of amplified gene fusions. Genes Dev. 1987 May;1(3):227–237. doi: 10.1101/gad.1.3.227. [DOI] [PubMed] [Google Scholar]
  41. Yu D., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., Court D. L. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978–5983. doi: 10.1073/pnas.100127597. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES