Abstract
Unlike a character measured at a finite set of landmark points, function-valued traits are those that change as a function of some independent and continuous variable. These traits, also called infinite-dimensional characters, can be described as the character process and include a number of biologically, economically, or biomedically important features, such as growth trajectories, allometric scalings, and norms of reaction. Here we present a new statistical infrastructure for mapping quantitative trait loci (QTL) underlying the character process. This strategy, termed functional mapping, integrates mathematical relationships of different traits or variables within the genetic mapping framework. Logistic mapping proposed in this article can be viewed as an example of functional mapping. Logistic mapping is based on a universal biological law that for each and every living organism growth over time follows an exponential growth curve (e.g., logistic or S-shaped). A maximum-likelihood approach based on a logistic-mixture model, implemented with the EM algorithm, is developed to provide the estimates of QTL positions, QTL effects, and other model parameters responsible for growth trajectories. Logistic mapping displays a tremendous potential to increase the power of QTL detection, the precision of parameter estimation, and the resolution of QTL localization due to the small number of parameters to be estimated, the pleiotropic effect of a QTL on growth, and/or residual correlations of growth at different ages. More importantly, logistic mapping allows for testing numerous biologically important hypotheses concerning the genetic basis of quantitative variation, thus gaining an insight into the critical role of development in shaping plant and animal evolution and domestication. The power of logistic mapping is demonstrated by an example of a forest tree, in which one QTL affecting stem growth processes is detected on a linkage group using our method, whereas it cannot be detected using current methods. The advantages of functional mapping are also discussed.
Full Text
The Full Text of this article is available as a PDF (161.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Broman K. W. Review of statistical methods for QTL mapping in experimental crosses. Lab Anim (NY) 2001 Jul-Aug;30(7):44–52. [PubMed] [Google Scholar]
- Cheverud J. M., Routman E. J., Duarte F. A., van Swinderen B., Cothran K., Perel C. Quantitative trait loci for murine growth. Genetics. 1996 Apr;142(4):1305–1319. doi: 10.1093/genetics/142.4.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doerge R. W., Churchill G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996 Jan;142(1):285–294. doi: 10.1093/genetics/142.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaves L. J., Neale M. C., Maes H. Multivariate multipoint linkage analysis of quantitative trait loci. Behav Genet. 1996 Sep;26(5):519–525. doi: 10.1007/BF02359757. [DOI] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
- Jaffrézic F., Pletcher S. D. Statistical models for estimating the genetic basis of repeated measures and other function-valued traits. Genetics. 2000 Oct;156(2):913–922. doi: 10.1093/genetics/156.2.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirkpatrick M., Heckman N. A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J Math Biol. 1989;27(4):429–450. doi: 10.1007/BF00290638. [DOI] [PubMed] [Google Scholar]
- Kirkpatrick M., Hill W. G., Thompson R. Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle. Genet Res. 1994 Aug;64(1):57–69. doi: 10.1017/s0016672300032559. [DOI] [PubMed] [Google Scholar]
- Kirkpatrick M., Lofsvold D., Bulmer M. Analysis of the inheritance, selection and evolution of growth trajectories. Genetics. 1990 Apr;124(4):979–993. doi: 10.1093/genetics/124.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knott S. A., Haley C. S. Multitrait least squares for quantitative trait loci detection. Genetics. 2000 Oct;156(2):899–911. doi: 10.1093/genetics/156.2.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korol A. B., Ronin Y. I., Itskovich A. M., Peng J., Nevo E. Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics. 2001 Apr;157(4):1789–1803. doi: 10.1093/genetics/157.4.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korol A. B., Ronin Y. I., Kirzhner V. M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics. 1995 Jul;140(3):1137–1147. doi: 10.1093/genetics/140.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loisel P., Goffinet B., Monod H., Montes De Oca G. Detecting a major gene in an F2 population. Biometrics. 1994 Jun;50(2):512–516. [PubMed] [Google Scholar]
- Mackay T. F. Quantitative trait loci in Drosophila. Nat Rev Genet. 2001 Jan;2(1):11–20. doi: 10.1038/35047544. [DOI] [PubMed] [Google Scholar]
- Mauricio R. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet. 2001 May;2(5):370–381. doi: 10.1038/35072085. [DOI] [PubMed] [Google Scholar]
- Nuzhdin S. V., Pasyukova E. G., Dilda C. L., Zeng Z. B., Mackay T. F. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9734–9739. doi: 10.1073/pnas.94.18.9734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Núez-Antón V., Zimmerman D. L. Modeling nonstationary longitudinal data. Biometrics. 2000 Sep;56(3):699–705. doi: 10.1111/j.0006-341x.2000.00699.x. [DOI] [PubMed] [Google Scholar]
- Pletcher S. D., Geyer C. J. The genetic analysis of age-dependent traits: modeling the character process. Genetics. 1999 Oct;153(2):825–835. doi: 10.1093/genetics/153.2.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sax K. The Association of Size Differences with Seed-Coat Pattern and Pigmentation in PHASEOLUS VULGARIS. Genetics. 1923 Nov;8(6):552–560. doi: 10.1093/genetics/8.6.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanksley S. D. Mapping polygenes. Annu Rev Genet. 1993;27:205–233. doi: 10.1146/annurev.ge.27.120193.001225. [DOI] [PubMed] [Google Scholar]
- VON BERTALANFFY L. Quantitative laws in metabolism and growth. Q Rev Biol. 1957 Sep;32(3):217–231. doi: 10.1086/401873. [DOI] [PubMed] [Google Scholar]
- Vaughn T. T., Pletscher L. S., Peripato A., King-Ellison K., Adams E., Erikson C., Cheverud J. M. Mapping quantitative trait loci for murine growth: a closer look at genetic architecture. Genet Res. 1999 Dec;74(3):313–322. doi: 10.1017/s0016672399004103. [DOI] [PubMed] [Google Scholar]
- West G. B., Brown J. H., Enquist B. J. A general model for ontogenetic growth. Nature. 2001 Oct 11;413(6856):628–631. doi: 10.1038/35098076. [DOI] [PubMed] [Google Scholar]
- West G. B., Brown J. H., Enquist B. J. A general model for the origin of allometric scaling laws in biology. Science. 1997 Apr 4;276(5309):122–126. doi: 10.1126/science.276.5309.122. [DOI] [PubMed] [Google Scholar]
- West G. B., Brown J. H., Enquist B. J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science. 1999 Jun 4;284(5420):1677–1679. doi: 10.1126/science.284.5420.1677. [DOI] [PubMed] [Google Scholar]
- Xu S. A comment on the simple regression method for interval mapping. Genetics. 1995 Dec;141(4):1657–1659. doi: 10.1093/genetics/141.4.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu S., Yi N. Mixed model analysis of quantitative trait loci. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14542–14547. doi: 10.1073/pnas.250235197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yin Tongming, Zhang Xinye, Huang Minren, Wang Minxiu, Zhuge Qiang, Tu Shengming, Zhu Li-Huang, Wu Rongling. Molecular linkage maps of the Populus genome. Genome. 2002 Jun;45(3):541–555. doi: 10.1139/g02-013. [DOI] [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]