Skip to main content
Genetics logoLink to Genetics
. 2002 Aug;161(4):1763–1769. doi: 10.1093/genetics/161.4.1763

Antioxidant gene expression in active and sedentary house mice (Mus domesticus) selected for high voluntary wheel-running behavior.

Anne M Bronikowski 1, Theodore J Morgan 1, Theodore Garland Jr 1, Patrick A Carter 1
PMCID: PMC1462202  PMID: 12196416

Abstract

We present liver mRNA levels of the two antioxidant enzymes catalase (CAT) and Mn-superoxide dismutase (SOD2) in four treatment groups of house mice assayed by RNase protection at 20 months of age. These groups were mice from four replicate selection and four replicate control lines from the sixteenth generation of selective breeding for high voluntary wheel running, housed with or without running wheels from age 3 weeks through 20 months. Exercising control females had induced CAT expression; SOD2 exhibited a similar pattern in females from two of the four control lines. Exercising male mice had induced CAT expression, but not SOD2 expression, irrespective of genetic background. We discuss these results with respect to both evolutionary (genetic) and training (exercise-induced) adaptations and explore predictions of these results in relation to the oxidative-damage theory of senescence.

Full Text

The Full Text of this article is available as a PDF (93.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal S., Sohal R. S. Relationship between aging and susceptibility to protein oxidative damage. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1203–1206. doi: 10.1006/bbrc.1993.1950. [DOI] [PubMed] [Google Scholar]
  2. Alessio H. M. Exercise-induced oxidative stress. Med Sci Sports Exerc. 1993 Feb;25(2):218–224. [PubMed] [Google Scholar]
  3. Arking R., Buck S., Berrios A., Dwyer S., Baker G. T., 3rd Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet. 1991;12(5):362–370. doi: 10.1002/dvg.1020120505. [DOI] [PubMed] [Google Scholar]
  4. Astrand P. O. Physical activity and fitness. Am J Clin Nutr. 1992 Jun;55(6 Suppl):1231S–1236S. doi: 10.1093/ajcn/55.6.1231S. [DOI] [PubMed] [Google Scholar]
  5. Barja G., Cadenas S., Rojas C., Pérez-Campo R., López-Torres M. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic Res. 1994 Oct;21(5):317–327. doi: 10.3109/10715769409056584. [DOI] [PubMed] [Google Scholar]
  6. Bejma J., Ji L. L. Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol (1985) 1999 Jul;87(1):465–470. doi: 10.1152/jappl.1999.87.1.465. [DOI] [PubMed] [Google Scholar]
  7. Bejma J., Ramires P., Ji L. L. Free radical generation and oxidative stress with ageing and exercise: differential effects in the myocardium and liver. Acta Physiol Scand. 2000 Aug;169(4):343–351. doi: 10.1046/j.1365-201x.2000.00745.x. [DOI] [PubMed] [Google Scholar]
  8. Blair S. N., Kohl H. W., 3rd, Barlow C. E., Paffenbarger R. S., Jr, Gibbons L. W., Macera C. A. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995 Apr 12;273(14):1093–1098. [PubMed] [Google Scholar]
  9. El Mouatassim S., Guérin P., Ménézo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod. 1999 Aug;5(8):720–725. doi: 10.1093/molehr/5.8.720. [DOI] [PubMed] [Google Scholar]
  10. Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000 Nov 9;408(6809):239–247. doi: 10.1038/35041687. [DOI] [PubMed] [Google Scholar]
  11. Hollander J., Fiebig R., Gore M., Bejma J., Ookawara T., Ohno H., Ji L. L. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training. Am J Physiol. 1999 Sep;277(3 Pt 2):R856–R862. doi: 10.1152/ajpregu.1999.277.3.R856. [DOI] [PubMed] [Google Scholar]
  12. Holloszy J. O. Exercise and longevity: studies on rats. J Gerontol. 1988 Nov;43(6):B149–B151. doi: 10.1093/geronj/43.6.b149. [DOI] [PubMed] [Google Scholar]
  13. Holloszy J. O., Schechtman K. B. Interaction between exercise and food restriction: effects on longevity of male rats. J Appl Physiol (1985) 1991 Apr;70(4):1529–1535. doi: 10.1152/jappl.1991.70.4.1529. [DOI] [PubMed] [Google Scholar]
  14. Holloszy J. O., Smith E. K., Vining M., Adams S. Effect of voluntary exercise on longevity of rats. J Appl Physiol (1985) 1985 Sep;59(3):826–831. doi: 10.1152/jappl.1985.59.3.826. [DOI] [PubMed] [Google Scholar]
  15. Jackson M. J., Edwards R. H., Symons M. C. Electron spin resonance studies of intact mammalian skeletal muscle. Biochim Biophys Acta. 1985 Nov 20;847(2):185–190. doi: 10.1016/0167-4889(85)90019-9. [DOI] [PubMed] [Google Scholar]
  16. Ji L. L., Leeuwenburgh C., Leichtweis S., Gore M., Fiebig R., Hollander J., Bejma J. Oxidative stress and aging. Role of exercise and its influences on antioxidant systems. Ann N Y Acad Sci. 1998 Nov 20;854:102–117. doi: 10.1111/j.1749-6632.1998.tb09896.x. [DOI] [PubMed] [Google Scholar]
  17. Leeuwenburgh C., Fiebig R., Chandwaney R., Ji L. L. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Physiol. 1994 Aug;267(2 Pt 2):R439–R445. doi: 10.1152/ajpregu.1994.267.2.R439. [DOI] [PubMed] [Google Scholar]
  18. Martin G. M., Austad S. N., Johnson T. E. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet. 1996 May;13(1):25–34. doi: 10.1038/ng0596-25. [DOI] [PubMed] [Google Scholar]
  19. Mlekusch W., Tillian H., Lamprecht M., Trutnovsky H., Horejsi R., Reibnegger G. The effect of reduced physical activity on longevity of mice. Mech Ageing Dev. 1996 Jul 17;88(3):159–168. doi: 10.1016/0047-6374(96)01734-4. [DOI] [PubMed] [Google Scholar]
  20. Nakao C., Ookawara T., Kizaki T., Oh-Ishi S., Miyazaki H., Haga S., Sato Y., Ji L. L., Ohno H. Effects of swimming training on three superoxide dismutase isoenzymes in mouse tissues. J Appl Physiol (1985) 2000 Feb;88(2):649–654. doi: 10.1152/jappl.2000.88.2.649. [DOI] [PubMed] [Google Scholar]
  21. Pletcher S. D., Houle D., Curtsinger J. W. Age-specific properties of spontaneous mutations affecting mortality in Drosophila melanogaster. Genetics. 1998 Jan;148(1):287–303. doi: 10.1093/genetics/148.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pletcher S. D., Houle D., Curtsinger J. W. The evolution of age-specific mortality rates in Drosophila melanogaster: genetic divergence among unselected lines. Genetics. 1999 Oct;153(2):813–823. doi: 10.1093/genetics/153.2.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rhodes J. S., Hosack G. R., Girard I., Kelley A. E., Mitchell G. S., Garland T., Jr Differential sensitivity to acute administration of cocaine, GBR 12909, and fluoxetine in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology (Berl) 2001 Nov;158(2):120–131. doi: 10.1007/s002130100857. [DOI] [PubMed] [Google Scholar]
  24. Sgrò C. M., Partridge L. A delayed wave of death from reproduction in Drosophila. Science. 1999 Dec 24;286(5449):2521–2524. doi: 10.1126/science.286.5449.2521. [DOI] [PubMed] [Google Scholar]
  25. Sohal R. S., Agarwal A., Agarwal S., Orr W. C. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem. 1995 Jun 30;270(26):15671–15674. doi: 10.1074/jbc.270.26.15671. [DOI] [PubMed] [Google Scholar]
  26. Sohal R. S., Ku H. H., Agarwal S., Forster M. J., Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev. 1994 May;74(1-2):121–133. doi: 10.1016/0047-6374(94)90104-x. [DOI] [PubMed] [Google Scholar]
  27. Sohal R. S., Sohal B. H., Brunk U. T. Relationship between antioxidant defenses and longevity in different mammalian species. Mech Ageing Dev. 1990 Apr 30;53(3):217–227. doi: 10.1016/0047-6374(90)90040-m. [DOI] [PubMed] [Google Scholar]
  28. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stearns S. C., Ackermann M., Doebeli M., Kaiser M. Experimental evolution of aging, growth, and reproduction in fruitflies. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3309–3313. doi: 10.1073/pnas.060289597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Swallow J. G., Carter P. A., Garland T., Jr Artificial selection for increased wheel-running behavior in house mice. Behav Genet. 1998 May;28(3):227–237. doi: 10.1023/a:1021479331779. [DOI] [PubMed] [Google Scholar]
  31. Thomas D. P., McCormick R. J., Zimmerman S. D., Vadlamudi R. K., Gosselin L. E. Aging- and training-induced alterations in collagen characteristics of rat left ventricle and papillary muscle. Am J Physiol. 1992 Sep;263(3 Pt 2):H778–H783. doi: 10.1152/ajpheart.1992.263.3.H778. [DOI] [PubMed] [Google Scholar]
  32. Thomson S. L., Garland Jr T., Swallow J. G., Carter P. A. Response of Sod-2 enzyme activity to selection for high voluntary wheel running. Heredity (Edinb) 2002 Jan;88(1):52–61. doi: 10.1038/sj.hdy.6800008. [DOI] [PubMed] [Google Scholar]
  33. Tümer N., LaRochelle J. S., Yürekli M. Exercise training reverses the age-related decline in tyrosine hydroxylase expression in rat hypothalamus. J Gerontol A Biol Sci Med Sci. 1997 Sep;52(5):B255–B259. doi: 10.1093/gerona/52a.5.b255. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES