Skip to main content
Genetics logoLink to Genetics
. 2002 Aug;161(4):1561–1578. doi: 10.1093/genetics/161.4.1561

Genetic differentiation in the African malaria vector, Anopheles gambiae s.s., and the problem of taxonomic status.

Gabriele Gentile 1, Alessandra Della Torre 1, Bertha Maegga 1, Jeffrey R Powell 1, Adalgisa Caccone 1
PMCID: PMC1462204  PMID: 12196401

Abstract

Of the seven recognized species of the Anopheles gambiae complex, A. gambiae s.s. is the most widespread and most important vector of malaria. It is becoming clear that, in parts of West Africa, this nominal species is not a single panmictic unit. We found that the internal transcribed spacer (ITS) of the X-linked rDNA has two distinct sequences with three fixed nucleotide differences; we detected no heterozygotes at these three sites, even in areas of sympatry of the two ITS types. The intergenic spacer (IGS) of this region also displays two distinct sequences that are in almost complete linkage disequilibrium with the distinct ITS alleles. We have designated these two types as S/type I and M/type II. These rDNA types correspond at least partly to the previously recognized chromosomal forms. Here we expand the geographic range of sampling to 251 individuals from 38 populations. Outside of West Africa, a single rDNA type, S/type I, corresponds to the Savanna chromosomal form. In West Africa, both types are often found in a single local sample. To understand if these findings might be due to unusual behavior of the rDNA region, we sequenced the same region for 46 A. arabiensis, a sympatric sibling species. No such distinct discontinuity was observed for this species. Autosomal inversions in one chromosome arm (2R), an insecticide resistance gene on 2L, and this single X-linked region indicate at least two genetically differentiated subpopulations of A. gambiae. Yet, rather extensive studies of other regions of the genome have failed to reveal genetic discontinuity. Evidently, incomplete genetic isolation exists within this single nominal species.

Full Text

The Full Text of this article is available as a PDF (154.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Besansky N. J., Lehmann T., Fahey G. T., Fontenille D., Braack L. E., Hawley W. A., Collins F. H. Patterns of mitochondrial variation within and between African malaria vectors, Anopheles gambiae and An. arabiensis, suggest extensive gene flow. Genetics. 1997 Dec;147(4):1817–1828. doi: 10.1093/genetics/147.4.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Besansky N. J., Powell J. R., Caccone A., Hamm D. M., Scott J. A., Collins F. H. Molecular phylogeny of the Anopheles gambiae complex suggests genetic introgression between principal malaria vectors. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6885–6888. doi: 10.1073/pnas.91.15.6885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caccone A., Garcia B. A., Powell J. R. Evolution of the mitochondrial DNA control region in the Anopheles gambiae complex. Insect Mol Biol. 1996 Feb;5(1):51–59. doi: 10.1111/j.1365-2583.1996.tb00040.x. [DOI] [PubMed] [Google Scholar]
  4. Castelloe J., Templeton A. R. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol. 1994 Jun;3(2):102–113. doi: 10.1006/mpev.1994.1013. [DOI] [PubMed] [Google Scholar]
  5. Chandre F., Manguin S., Brengues C., Dossou Yovo J., Darriet F., Diabate A., Carnevale P., Guillet P. Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from west Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia. 1999 Sep;41(1-3):319–322. [PubMed] [Google Scholar]
  6. Clement M., Posada D., Crandall K. A. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000 Oct;9(10):1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. [DOI] [PubMed] [Google Scholar]
  7. Collins F. H., Mendez M. A., Rasmussen M. O., Mehaffey P. C., Besansky N. J., Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987 Jul;37(1):37–41. doi: 10.4269/ajtmh.1987.37.37. [DOI] [PubMed] [Google Scholar]
  8. Coluzzi M., Sabatini A., Petrarca V., Di Deco M. A. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979;73(5):483–497. doi: 10.1016/0035-9203(79)90036-1. [DOI] [PubMed] [Google Scholar]
  9. DAVIDSON G. THE FIVE MATING-TYPES IN THE ANOPHELES GAMBIAE COMPLEX. Riv Malariol. 1964 Dec;43:167–183. [PubMed] [Google Scholar]
  10. Davidson G., Hunt R. H. The crossing and chromosome characteristics of a new, sixth species in the Anopheles gambiae complex. Parassitologia. 1973 Apr-Aug;15(1):121–128. [PubMed] [Google Scholar]
  11. Edillo Frances E., Touré Yeya T., Lanzaro Gregory C., Dolo Guimogo, Taylor Charles E. Spatial and habitat distribution of Anopheles gambiae and Anopheles arabiensis (Diptera: Culicidae) in Banambani village, Mali. J Med Entomol. 2002 Jan;39(1):70–77. doi: 10.1603/0022-2585-39.1.70. [DOI] [PubMed] [Google Scholar]
  12. Favia G., Dimopoulos G., della Torre A., Touré Y. T., Coluzzi M., Louis C. Polymorphisms detected by random PCR distinguish between different chromosomal forms of Anopheles gambiae. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10315–10319. doi: 10.1073/pnas.91.22.10315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Favia G., della Torre A., Bagayoko M., Lanfrancotti A., Sagnon N., Touré Y. T., Coluzzi M. Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Mol Biol. 1997 Nov;6(4):377–383. doi: 10.1046/j.1365-2583.1997.00189.x. [DOI] [PubMed] [Google Scholar]
  14. Gentile G., Slotman M., Ketmaier V., Powell J. R., Caccone A. Attempts to molecularly distinguish cryptic taxa in Anopheles gambiae s.s. Insect Mol Biol. 2001 Feb;10(1):25–32. doi: 10.1046/j.1365-2583.2001.00237.x. [DOI] [PubMed] [Google Scholar]
  15. Hunt R. H., Coetzee M., Fettene M. The Anopheles gambiae complex: a new species from Ethiopia. Trans R Soc Trop Med Hyg. 1998 Mar-Apr;92(2):231–235. doi: 10.1016/s0035-9203(98)90761-1. [DOI] [PubMed] [Google Scholar]
  16. Lanzaro G. C., Touré Y. T., Carnahan J., Zheng L., Dolo G., Traoré S., Petrarca V., Vernick K. D., Taylor C. E. Complexities in the genetic structure of Anopheles gambiae populations in west Africa as revealed by microsatellite DNA analysis. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14260–14265. doi: 10.1073/pnas.95.24.14260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Machado Carlos A., Kliman Richard M., Markert Jeffrey A., Hey Jody. Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. Mol Biol Evol. 2002 Apr;19(4):472–488. doi: 10.1093/oxfordjournals.molbev.a004103. [DOI] [PubMed] [Google Scholar]
  18. Mukabayire O., Caridi J., Wang X., Touré Y. T., Coluzzi M., Besansky N. J. Patterns of DNA sequence variation in chromosomally recognized taxa of Anopheles gambiae: evidence from rDNA and single-copy loci. Insect Mol Biol. 2001 Feb;10(1):33–46. doi: 10.1046/j.1365-2583.2001.00238.x. [DOI] [PubMed] [Google Scholar]
  19. Noor M. A., Grams K. L., Bertucci L. A., Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A. 2001 Oct 2;98(21):12084–12088. doi: 10.1073/pnas.221274498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paskewitz S. M., Wesson D. M., Collins F. H. The internal transcribed spacers of ribosomal DNA in five members of the Anopheles gambiae species complex. Insect Mol Biol. 1993;2(4):247–257. doi: 10.1111/j.1365-2583.1994.tb00144.x. [DOI] [PubMed] [Google Scholar]
  21. Petrarca V., Beier J. C., Onyango F., Koros J., Asiago C., Koech D. K., Roberts C. R. Species composition of the Anopheles gambiae complex (diptera: Culicidae) at two sites in western Kenya. J Med Entomol. 1991 May;28(3):307–313. doi: 10.1093/jmedent/28.3.307. [DOI] [PubMed] [Google Scholar]
  22. Ranson H., Jensen B., Vulule J. M., Wang X., Hemingway J., Collins F. H. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000 Oct;9(5):491–497. doi: 10.1046/j.1365-2583.2000.00209.x. [DOI] [PubMed] [Google Scholar]
  23. Taylor C., Touré Y. T., Carnahan J., Norris D. E., Dolo G., Traoré S. F., Edillo F. E., Lanzaro G. C. Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, West Africa. Genetics. 2001 Feb;157(2):743–750. doi: 10.1093/genetics/157.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Touré Y. T., Petrarca V., Traoré S. F., Coulibaly A., Maiga H. M., Sankaré O., Sow M., Di Deco M. A., Coluzzi M. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998 Dec;40(4):477–511. [PubMed] [Google Scholar]
  25. Wang R., Zheng L., Touré Y. T., Dandekar T., Kafatos F. C. When genetic distance matters: measuring genetic differentiation at microsatellite loci in whole-genome scans of recent and incipient mosquito species. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10769–10774. doi: 10.1073/pnas.191003598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  27. Weill M., Chandre F., Brengues C., Manguin S., Akogbeto M., Pasteur N., Guillet P., Raymond M. The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Mol Biol. 2000 Oct;9(5):451–455. doi: 10.1046/j.1365-2583.2000.00206.x. [DOI] [PubMed] [Google Scholar]
  28. White G. B. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg. 1974;68(4):278–301. doi: 10.1016/0035-9203(74)90035-2. [DOI] [PubMed] [Google Scholar]
  29. Yeh L. C., Lee J. C. Structural analysis of the internal transcribed spacer 2 of the precursor ribosomal RNA from Saccharomyces cerevisiae. J Mol Biol. 1990 Feb 20;211(4):699–712. doi: 10.1016/0022-2836(90)90071-S. [DOI] [PubMed] [Google Scholar]
  30. della Torre A., Fanello C., Akogbeto M., Dossou-yovo J., Favia G., Petrarca V., Coluzzi M. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol. 2001 Feb;10(1):9–18. doi: 10.1046/j.1365-2583.2001.00235.x. [DOI] [PubMed] [Google Scholar]
  31. della Torre A., Merzagora L., Powell J. R., Coluzzi M. Selective introgression of paracentric inversions between two sibling species of the Anopheles gambiae complex. Genetics. 1997 May;146(1):239–244. doi: 10.1093/genetics/146.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES