Abstract
Mitochondrial genome replication is asymmetric. Replication starts from the origin of heavy (H)-strand replication, displacing the parental H-strand as it proceeds along the molecule. The H-strand remains single stranded until light (L)-strand replication is initiated from a second origin of replication. It has been suggested that single-stranded H-strand DNA is more sensitive to mutational damage, giving rise to substitutional rate differences between the two strands and among genes in mammalian mitochondrial DNA. In this study, we analyzed sequences of the cytochrome b, ND4, ND4L, and COI genes of cyprinid fishes to investigate rates and patterns of nucleotide substitution in the mitochondrial genome. To test for strand-asymmetric mutation pressure, a likelihood-ratio test was developed and applied to the cyprinid sequences. Patterns of substitution and levels of strand-asymmetric mutation pressure were largely consistent with a mutation gradient between the H- and L-strand origins of replication. Significant strand bias was observed among rates of transitional substitution. However, biological interpretation of the direction and strength of strand asymmetry for specific classes of substitutions is problematic. The problem occurs because the rate of any single class of substitution inferred from one strand is actually a sum of rates on two strands. The validity of the likelihood-ratio test is not affected by this problem.
Full Text
The Full Text of this article is available as a PDF (111.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bielawski J. P., Gold J. R. Unequal synonymous substitution rates within and between two protein-coding mitochondrial genes. Mol Biol Evol. 1996 Jul;13(6):889–892. doi: 10.1093/oxfordjournals.molbev.a025649. [DOI] [PubMed] [Google Scholar]
- Brown G. G., Simpson M. V. Novel features of animal mtDNA evolution as shown by sequences of two rat cytochrome oxidase subunit II genes. Proc Natl Acad Sci U S A. 1982 May;79(10):3246–3250. doi: 10.1073/pnas.79.10.3246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bulmer M. Strand symmetry of mutation rates in the beta-globin region. J Mol Evol. 1991 Oct;33(4):305–310. doi: 10.1007/BF02102861. [DOI] [PubMed] [Google Scholar]
- Clayton D. A. Replication of animal mitochondrial DNA. Cell. 1982 Apr;28(4):693–705. doi: 10.1016/0092-8674(82)90049-6. [DOI] [PubMed] [Google Scholar]
- Croteau D. L., Bohr V. A. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem. 1997 Oct 10;272(41):25409–25412. doi: 10.1074/jbc.272.41.25409. [DOI] [PubMed] [Google Scholar]
- Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
- Francino M. P., Ochman H. Strand symmetry around the beta-globin origin of replication in primates. Mol Biol Evol. 2000 Mar;17(3):416–422. doi: 10.1093/oxfordjournals.molbev.a026321. [DOI] [PubMed] [Google Scholar]
- Goldman N. Statistical tests of models of DNA substitution. J Mol Evol. 1993 Feb;36(2):182–198. doi: 10.1007/BF00166252. [DOI] [PubMed] [Google Scholar]
- Goldman N., Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994 Sep;11(5):725–736. doi: 10.1093/oxfordjournals.molbev.a040153. [DOI] [PubMed] [Google Scholar]
- Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
- Holt I. J., Lorimer H. E., Jacobs H. T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell. 2000 Mar 3;100(5):515–524. doi: 10.1016/s0092-8674(00)80688-1. [DOI] [PubMed] [Google Scholar]
- Kumar Sudhir, Subramanian Sankar. Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A. 2002 Jan 15;99(2):803–808. doi: 10.1073/pnas.022629899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
- Miyamoto M. M., Slightom J. L., Goodman M. Phylogenetic relations of humans and African apes from DNA sequences in the psi eta-globin region. Science. 1987 Oct 16;238(4825):369–373. doi: 10.1126/science.3116671. [DOI] [PubMed] [Google Scholar]
- Nedbal M. A., Flynn J. J. Do the combined effects of the asymmetric process of replication and DNA damage from oxygen radicals produce a mutation-rate signature in the mitochondrial genome? Mol Biol Evol. 1998 Feb;15(2):219–223. doi: 10.1093/oxfordjournals.molbev.a025917. [DOI] [PubMed] [Google Scholar]
- Perna N. T., Kocher T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol. 1995 Sep;41(3):353–358. doi: 10.1007/BF00186547. [DOI] [PubMed] [Google Scholar]
- Pesole G., Gissi C., De Chirico A., Saccone C. Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol. 1999 Apr;48(4):427–434. doi: 10.1007/pl00006487. [DOI] [PubMed] [Google Scholar]
- Reyes A., Gissi C., Pesole G., Saccone C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol. 1998 Aug;15(8):957–966. doi: 10.1093/oxfordjournals.molbev.a026011. [DOI] [PubMed] [Google Scholar]
- Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sueoka N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol. 1995 Mar;40(3):318–325. doi: 10.1007/BF00163236. [DOI] [PubMed] [Google Scholar]
- Tanaka M., Ozawa T. Strand asymmetry in human mitochondrial DNA mutations. Genomics. 1994 Jul 15;22(2):327–335. doi: 10.1006/geno.1994.1391. [DOI] [PubMed] [Google Scholar]
- Wu C. I., Maeda N. Inequality in mutation rates of the two strands of DNA. Nature. 1987 May 14;327(6118):169–170. doi: 10.1038/327169a0. [DOI] [PubMed] [Google Scholar]
- Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994 Sep;39(3):306–314. doi: 10.1007/BF00160154. [DOI] [PubMed] [Google Scholar]
- Yang Z. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol. 1993 Nov;10(6):1396–1401. doi: 10.1093/oxfordjournals.molbev.a040082. [DOI] [PubMed] [Google Scholar]
- Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]