Skip to main content
Genetics logoLink to Genetics
. 2002 Aug;161(4):1539–1550. doi: 10.1093/genetics/161.4.1539

Distribution of nonrandom associations between pairs of protein loci along the third chromosome of Drosophila melanogaster.

Carlos Zapata 1, Concepción Núñez 1, Teresa Velasco 1
PMCID: PMC1462214  PMID: 12196399

Abstract

The within-chromosome distribution of gametic disequilibrium (GD) between protein loci, and the underlying evolutionary factors of this distribution, are still largely unknown. Here, we report a detailed study of GD between a large number of protein loci (15) spanning 87% of the total length of the third chromosome of Drosophila melanogaster in a large sample of haplotypes (600) drawn from a single natural population. We used a sign-based GD estimation method recently developed for multiallelic systems, which considerably increases both the statistical power and the accuracy of estimation of the intensity of GD. We found that strong GD between pairs of protein loci was widespread throughout the chromosome. In total, 22% of both the pairs of alleles and pairs of loci were in significant GD, with mean intensities (as measured by D' coefficients) of 0.43 and 0.31, respectively. In addition, strong GD often occurs between loci that are far apart. By way of illustration, 32% of the allele pairs in significant GD occurred within pairs of loci separated by effective frequencies of recombination (EFRs) of 15-20 cM, the mean D' value being 0.49. These observations are in sharp contrast with previous studies showing that GD between protein loci is rarely found in natural populations of outcrossing species, even between very closely linked loci. Interestingly, we found that most instances of significant interallelic GD (68%) involved functionally related protein loci. Specifically, GD was markedly more frequent between protein loci related by the functions of hormonal control, molybdenum control, antioxidant defense system, and reproduction than between loci without known functional relationship, which is indicative of epistatic selection. Furthermore, long-distance GD between functionally related loci (mean EFR 9 cM) suggests that epistatic interactions must be very strong along the chromosome. This evidence is hardly compatible with the neutral theory and has far-reaching implications for understanding the multilocus architecture of the functional genome. Our findings also suggest that GD may be a useful tool for discovering networks of functionally interacting proteins.

Full Text

The Full Text of this article is available as a PDF (137.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akam M. E., Roberts D. B., Wolfe J. Drosophila hemolymph proteins: purification, characterization, and genetic mapping of larval serum protein 2 in D. melanogaster. Biochem Genet. 1978 Feb;16(1-2):101–119. doi: 10.1007/BF00484387. [DOI] [PubMed] [Google Scholar]
  2. Antoniewski C., O'Grady M. S., Edmondson R. G., Lassieur S. M., Benes H. Characterization of an EcR/USP heterodimer target site that mediates ecdysone responsiveness of the Drosophila Lsp-2 gene. Mol Gen Genet. 1995 Dec 15;249(5):545–556. doi: 10.1007/BF00290580. [DOI] [PubMed] [Google Scholar]
  3. Ayala F. J., Powell J. R., Tracey M. L., Mourão C. A., Pérez-Salas S. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics. 1972 Jan;70(1):113–139. doi: 10.1093/genetics/70.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barker J. S. Inter-locus interactions: a review of experimental evidence. Theor Popul Biol. 1979 Dec;16(3):323–346. doi: 10.1016/0040-5809(79)90021-2. [DOI] [PubMed] [Google Scholar]
  5. Bodmer W. F., Felsenstein J. Linkage and selection: theoretical analysis of the deterministic two locus random mating model. Genetics. 1967 Oct;57(2):237–265. doi: 10.1093/genetics/57.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chakraborty R., Weiss K. M. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9119–9123. doi: 10.1073/pnas.85.23.9119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charlesworth B., Charlesworth D., Loukas M. A Study of Linkage Disequilibrium in British Populations of DROSOPHILA SUBOBSCURA. Genetics. 1979 Jul;92(3):983–994. doi: 10.1093/genetics/92.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cox-Foster D. L., Schonbaum C. P., Murtha M. T., Cavener D. R. Developmental expression of the glucose dehydrogenase gene in Drosophila melanogaster. Genetics. 1990 Apr;124(4):873–880. doi: 10.1093/genetics/124.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Curie-Cohen M. Estimates of inbreeding in a natural population: a comparison of sampling properties. Genetics. 1982 Feb;100(2):339–358. doi: 10.1093/genetics/100.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cypher J. J., Tedesco J. L., Courtright J. B., Kumaran A. K. Tissue-specific and substrate-specific detection of aldehyde and pyridoxal oxidase in larval and imaginal tissues of Drosophila melanogaster. Biochem Genet. 1982 Apr;20(3-4):315–332. doi: 10.1007/BF00484427. [DOI] [PubMed] [Google Scholar]
  12. David J. R. Latitudinal variability of Drosophila melanogaster: allozyme frequencies divergence between European and Afrotropical populations. Biochem Genet. 1982 Aug;20(7-8):747–762. doi: 10.1007/BF00483971. [DOI] [PubMed] [Google Scholar]
  13. Dove A. Proteomics: translating genomics into products? Nat Biotechnol. 1999 Mar;17(3):233–236. doi: 10.1038/6972. [DOI] [PubMed] [Google Scholar]
  14. Eisenberg D., Marcotte E. M., Xenarios I., Yeates T. O. Protein function in the post-genomic era. Nature. 2000 Jun 15;405(6788):823–826. doi: 10.1038/35015694. [DOI] [PubMed] [Google Scholar]
  15. Farkas R., Knopp J. Genetic and hormonal control of cytosolic malate dehydrogenase activity in Drosophila melanogaster. Gen Physiol Biophys. 1998 Mar;17(1):37–50. [PubMed] [Google Scholar]
  16. Fontdevila A., Zapata C., Alvarez G., Sanchez L., Méndez J., Enriquez I. Genetic Coadaptation in the Chromosomal Polymorphism of DROSOPHILA SUBOBSCURA. I. Seasonal Changes of Gametic Disequilibrium in a Natural Population. Genetics. 1983 Dec;105(4):935–955. doi: 10.1093/genetics/105.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Franklin I., Lewontin R. C. Is the gene the unit of selection? Genetics. 1970 Aug;65(4):707–734. doi: 10.1093/genetics/65.4.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Girard P., Palabost L., Petit C. Enzymatic variation at seven loci in nine natural populations of Drosophila melanogaster. Biochem Genet. 1977 Jun;15(5-6):589–599. doi: 10.1007/BF00520200. [DOI] [PubMed] [Google Scholar]
  19. Gomes I., Collins A., Lonjou C., Thomas N. S., Wilkinson J., Watson M., Morton N. Hardy-Weinberg quality control. Ann Hum Genet. 1999 Nov;63(Pt 6):535–538. doi: 10.1017/S0003480099007824. [DOI] [PubMed] [Google Scholar]
  20. Hedrick P. W., Thomson G. A two-locus neutrality test: applications to humans, E. coli and lodgepole pine. Genetics. 1986 Jan;112(1):135–156. doi: 10.1093/genetics/112.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hilliker A. J., Duyf B., Evans D., Phillips J. P. Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4343–4347. doi: 10.1073/pnas.89.10.4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Humphreys J. M., Duyf B., Joiner M. L., Phillips J. P., Hilliker A. J. Genetic analysis of oxygen defense mechanisms in Drosophila melanogaster and identification of a novel behavioural mutant with a Shaker phenotype. Genome. 1996 Aug;39(4):749–757. doi: 10.1139/g96-094. [DOI] [PubMed] [Google Scholar]
  23. Karotam J., Oakeshott J. G. Regulatory aspects of esterase 6 activity variation in sibling Drosophila species. Heredity (Edinb) 1993 Jul;71(Pt 1):41–50. doi: 10.1038/hdy.1993.105. [DOI] [PubMed] [Google Scholar]
  24. Klitz W., Thomson G. Disequilibrium pattern analysis. II. Application to Danish HLA A and B locus data. Genetics. 1987 Aug;116(4):633–643. doi: 10.1093/genetics/116.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Langley C. H., Ito K., Voelker R. A. Linkage disequilibrium in natural populations of Drosophila melanogaster Seasonal variation. Genetics. 1977 Jun;86(2 Pt 1):447–454. [PMC free article] [PubMed] [Google Scholar]
  26. Langley C. H., Tobari Y. N., Kojima K. I. Linkage disequilibrium in natural populations of Drosophila melanogaster. Genetics. 1974 Nov;78(3):921–936. doi: 10.1093/genetics/78.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Loukas M., Krimbas C. B., Vergini Y. The genetics of Drosophila subobscura populations. IX. Studies on linkage disequilibrium in four natural populations. Genetics. 1979 Oct;93(2):497–523. doi: 10.1093/genetics/93.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967 Feb;27(2):209–220. [PubMed] [Google Scholar]
  29. Massey H. C., Jr, Kejzlarová-Lepesant J., Willis R. L., Castleberry A. B., Benes H. The Drosophila Lsp-1 beta gene. A structural and phylogenetic analysis. Eur J Biochem. 1997 Apr 1;245(1):199–207. doi: 10.1111/j.1432-1033.1997.00199.x. [DOI] [PubMed] [Google Scholar]
  30. Mitton J. B., Koehn R. K. Population genetics of marine pelecypods. 3. Epistasis between functionally related isoenzymes of Mytilus edulis. Genetics. 1973 Mar;73(3):487–496. doi: 10.1093/genetics/73.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mousseron-Grall S., Kejzlarová-Lepesant J., Burmester T., Chihara C., Barray M., Delain E., Pictet R., Lepesant J. A. Sequence, structure and evolution of the ecdysone-inducible Lsp-2 gene of Drosophila melanogaster. Eur J Biochem. 1997 Apr 1;245(1):191–198. doi: 10.1111/j.1432-1033.1997.00191.x. [DOI] [PubMed] [Google Scholar]
  32. Pandey A., Mann M. Proteomics to study genes and genomes. Nature. 2000 Jun 15;405(6788):837–846. doi: 10.1038/35015709. [DOI] [PubMed] [Google Scholar]
  33. Peterson A. C., Di Rienzo A., Lehesjoki A. E., de la Chapelle A., Slatkin M., Freimer N. B. The distribution of linkage disequilibrium over anonymous genome regions. Hum Mol Genet. 1995 May;4(5):887–894. doi: 10.1093/hmg/4.5.887. [DOI] [PubMed] [Google Scholar]
  34. Roberts D. B., Evans-Roberts S. The genetic and cytogenetic localization of the three structural genes coding for the major protein of drosophila larval serum. Genetics. 1979 Nov;93(3):663–679. doi: 10.1093/genetics/93.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robertson A., Hill W. G. Deviations from Hardy-Weinberg proportions: sampling variances and use in estimation of inbreeding coefficients. Genetics. 1984 Aug;107(4):703–718. doi: 10.1093/genetics/107.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sham P. C., Curtis D. Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet. 1995 Jan;59(Pt 1):97–105. doi: 10.1111/j.1469-1809.1995.tb01608.x. [DOI] [PubMed] [Google Scholar]
  37. Singh R. S., Hickey D. A., David J. Genetic Differentiation between Geographically Distant Populations of DROSOPHILA MELANOGASTER. Genetics. 1982 Jun;101(2):235–256. doi: 10.1093/genetics/101.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Slatkin M. On treating the chromosome as the unit of selection. Genetics. 1972 Sep;72(1):157–168. doi: 10.1093/genetics/72.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Taillon-Miller P., Bauer-Sardiña I., Saccone N. L., Putzel J., Laitinen T., Cao A., Kere J., Pilia G., Rice J. P., Kwok P. Y. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet. 2000 Jul;25(3):324–328. doi: 10.1038/77100. [DOI] [PubMed] [Google Scholar]
  40. Thomson G. The effect of a selected locus on linked neutral loci. Genetics. 1977 Apr;85(4):753–788. doi: 10.1093/genetics/85.4.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Warner C. K., Finnerty V. Molybdenum hydroxylases in Drosophila. II. Molybdenum cofactor in xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase. Mol Gen Genet. 1981;184(1):92–96. doi: 10.1007/BF00271201. [DOI] [PubMed] [Google Scholar]
  42. Weir B. S., Cockerham C. C. Testing Hypotheses about Linkage Disequilibrium with Multiple Alleles. Genetics. 1978 Mar;88(3):633–642. doi: 10.1093/genetics/88.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williams K. L. Genomes and proteomes: towards a multidimensional view of biology. Electrophoresis. 1999 Apr-May;20(4-5):678–688. doi: 10.1002/(SICI)1522-2683(19990101)20:4/5<678::AID-ELPS678>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  44. Zapata C., Alvarez G. On the detection of nonrandom associations between DNA polymorphisms in natural populations of Drosophila. Mol Biol Evol. 1993 Jul;10(4):823–841. doi: 10.1093/oxfordjournals.molbev.a040045. [DOI] [PubMed] [Google Scholar]
  45. Zapata C., Alvarez G., Rodríguez-Trelles F., Maside X. A long-term study on seasonal changes of gametic disequilibrium between allozymes and inversions in Drosophila subobscura. Evolution. 2000 Oct;54(5):1673–1679. doi: 10.1111/j.0014-3820.2000.tb00711.x. [DOI] [PubMed] [Google Scholar]
  46. Zapata C., Rodríguez S., Visedo G., Sacristán F. Spectrum of nonrandom associations between microsatellite loci on human chromosome 11p15. Genetics. 2001 Jul;158(3):1235–1251. doi: 10.1093/genetics/158.3.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zouros E., Johnson W. Linkage disequilibrium between functionally related enzyme loci of Drosophila mojavensis. Can J Genet Cytol. 1976 Jun;18(2):245–254. doi: 10.1139/g76-031. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES