Skip to main content
Genetics logoLink to Genetics
. 2002 Aug;161(4):1673–1683. doi: 10.1093/genetics/161.4.1673

A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci.

Niels Sandal 1, Lene Krusell 1, Simona Radutoiu 1, Magdalena Olbryt 1, Andrea Pedrosa 1, Silke Stracke 1, Shusei Sato 1, Tomohiko Kato 1, Satoshi Tabata 1, Martin Parniske 1, Andreas Bachmair 1, Tina Ketelsen 1, Jens Stougaard 1
PMCID: PMC1462218  PMID: 12196410

Abstract

A genetic map for the model legume Lotus japonicus has been developed. The F(2) mapping population was established from an interspecific cross between L. japonicus and L. filicaulis. A high level of DNA polymorphism between these parents was the source of markers for linkage analysis and the map is based on a framework of amplified fragment length polymorphism (AFLP) markers. Additional markers were generated by restriction fragment length polymorphism (RFLP) and sequence-specific PCR. A total of 524 AFLP markers, 3 RAPD markers, 39 gene-specific markers, 33 microsatellite markers, and six recessive symbiotic mutant loci were mapped. This genetic map consists of six linkage groups corresponding to the six chromosomes in L. japonicus. Fluorescent in situ hybridization (FISH) with selected markers aligned the linkage groups to chromosomes as described in the accompanying article by Pedrosa et al. 2002(this issue). The length of the linkage map is 367 cM and the average marker distance is 0.6 cM. Distorted segregation of markers was found in certain sections of the map and linkage group I could be assembled only by combining colormapping and cytogenetics (FISH). A fast method to position genetic loci employing three AFLP primer combinations yielding 89 markers was developed and evaluated by mapping three symbiotic loci, Ljsym1, Ljsym5, and Ljhar1-3.

Full Text

The Full Text of this article is available as a PDF (296.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borg S., Brandstrup B., Jensen T. J., Poulsen C. Identification of new protein species among 33 different small GTP-binding proteins encoded by cDNAs from Lotus japonicus, and expression of corresponding mRNAs in developing root nodules. Plant J. 1997 Feb;11(2):237–250. doi: 10.1046/j.1365-313x.1997.11020237.x. [DOI] [PubMed] [Google Scholar]
  2. Borg S., Pødenphant L., Jensen T. J., Poulsen C. Plant cell growth and differentiation may involve GAP regulation of Rac activity. FEBS Lett. 1999 Jun 25;453(3):341–345. doi: 10.1016/s0014-5793(99)00750-4. [DOI] [PubMed] [Google Scholar]
  3. Christiansen H., Hansen A. C., Vijn I., Pallisgaard N., Larsen K., Yang W. C., Bisseling T., Marcker K. A., Jensen E. O. A novel type of DNA-binding protein interacts with a conserved sequence in an early nodulin ENOD12 promoter. Plant Mol Biol. 1996 Dec;32(5):809–821. doi: 10.1007/BF00020479. [DOI] [PubMed] [Google Scholar]
  4. Cyranoski D. Japanese legume project may help to fix nitrogen problem. Nature. 2001 Jan 18;409(6818):272–272. doi: 10.1038/35053291. [DOI] [PubMed] [Google Scholar]
  5. Fishman L., Kelly A. J., Morgan E., Willis J. H. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics. 2001 Dec;159(4):1701–1716. doi: 10.1093/genetics/159.4.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flemetakis E., Kavroulakis N., Quaedvlieg N. E., Spaink H. P., Dimou M., Roussis A., Katinakis P. Lotus japonicus contains two distinct ENOD40 genes that are expressed in symbiotic, nonsymbiotic, and embryonic tissues. Mol Plant Microbe Interact. 2000 Sep;13(9):987–994. doi: 10.1094/MPMI.2000.13.9.987. [DOI] [PubMed] [Google Scholar]
  7. Harker C. L., Ellis T. H., Coen E. S. Identification and genetic regulation of the chalcone synthase multigene family in pea. Plant Cell. 1990 Mar;2(3):185–194. doi: 10.1105/tpc.2.3.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayashi M., Miyahara A., Sato S., Kato T., Yoshikawa M., Taketa M., Hayashi M., Pedrosa A., Onda R., Imaizumi-Anraku H. Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res. 2001 Dec 31;8(6):301–310. doi: 10.1093/dnares/8.6.301. [DOI] [PubMed] [Google Scholar]
  9. Hofer J., Turner L., Hellens R., Ambrose M., Matthews P., Michael A., Ellis N. UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol. 1997 Aug 1;7(8):581–587. doi: 10.1016/s0960-9822(06)00257-0. [DOI] [PubMed] [Google Scholar]
  10. Jiang Q., Gresshoff P. M. Classical and molecular genetics of the model legume Lotus japonicus. Mol Plant Microbe Interact. 1997 Jan;10(1):59–68. doi: 10.1094/MPMI.1997.10.1.59. [DOI] [PubMed] [Google Scholar]
  11. Lyttle T. W. Segregation distorters. Annu Rev Genet. 1991;25:511–557. doi: 10.1146/annurev.ge.25.120191.002455. [DOI] [PubMed] [Google Scholar]
  12. Michelmore R. W., Paran I., Kesseli R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828–9832. doi: 10.1073/pnas.88.21.9828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mickenberg I. D., Snyderman R., Root R. K., Mergenhagen S. E., Wolff S. M. Immune fever in the rabbit: responses of the hematologic and complement systems. J Immunol. 1971 Nov;107(5):1457–1465. [PubMed] [Google Scholar]
  14. Neff M. M., Neff J. D., Chory J., Pepper A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 1998 May;14(3):387–392. doi: 10.1046/j.1365-313x.1998.00124.x. [DOI] [PubMed] [Google Scholar]
  15. Pedrosa Andrea, Sandal Niels, Stougaard Jens, Schweizer Dieter, Bachmair Andreas. Chromosomal map of the model legume Lotus japonicus. Genetics. 2002 Aug;161(4):1661–1672. doi: 10.1093/genetics/161.4.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roberts N. J., Brigham J., Wu B., Murphy J. B., Volpin H., Phillips D. A., Etzler M. E. A Nod factor-binding lectin is a member of a distinct class of apyrases that may be unique to the legumes. Mol Gen Genet. 1999 Sep;262(2):261–267. doi: 10.1007/s004380051082. [DOI] [PubMed] [Google Scholar]
  17. Sato S., Kaneko T., Nakamura Y., Asamizu E., Kato T., Tabata S. Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 mb regions of the genome. DNA Res. 2001 Dec 31;8(6):311–318. doi: 10.1093/dnares/8.6.311. [DOI] [PubMed] [Google Scholar]
  18. Schauser L., Christensen L., Borg S., Poulsen C. PZF, a cDNA isolated from Lotus japonicus and soybean root nodule libraries, encodes a new plant member of the RING-finger family of zinc-binding proteins. Plant Physiol. 1995 Apr;107(4):1457–1458. doi: 10.1104/pp.107.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schauser L., Handberg K., Sandal N., Stiller J., Thykjaer T., Pajuelo E., Nielsen A., Stougaard J. Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet. 1998 Sep;259(4):414–423. doi: 10.1007/s004380050831. [DOI] [PubMed] [Google Scholar]
  20. Schauser L., Roussis A., Stiller J., Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature. 1999 Nov 11;402(6758):191–195. doi: 10.1038/46058. [DOI] [PubMed] [Google Scholar]
  21. Stougaard J. Genetics and genomics of root symbiosis. Curr Opin Plant Biol. 2001 Aug;4(4):328–335. doi: 10.1016/s1369-5266(00)00181-3. [DOI] [PubMed] [Google Scholar]
  22. Thykjaer T., Danielsen D., She Q., Stougaard J. Organization and expression of genes in the genomic region surrounding the glutamine synthetase gene Gln1 from Lotus japonicus. Mol Gen Genet. 1997 Aug;255(6):628–636. doi: 10.1007/s004380050537. [DOI] [PubMed] [Google Scholar]
  23. Turner S. R., Hellens R., Ireland R., Ellis N., Rawsthorne S. The organisation and expression of the genes encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (Pisum sativum). Mol Gen Genet. 1993 Jan;236(2-3):402–408. doi: 10.1007/BF00277140. [DOI] [PubMed] [Google Scholar]
  24. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Webb K. J., Skøt L., Nicholson M. N., Jørgensen B., Mizen S. Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging in Lotus japonicus. Mol Plant Microbe Interact. 2000 Jun;13(6):606–616. doi: 10.1094/MPMI.2000.13.6.606. [DOI] [PubMed] [Google Scholar]
  26. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wopereis J., Pajuelo E., Dazzo F. B., Jiang Q., Gresshoff P. M., De Bruijn F. J., Stougaard J., Szczyglowski K. Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J. 2000 Jul;23(1):97–114. doi: 10.1046/j.1365-313x.2000.00799.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES