Skip to main content
Genetics logoLink to Genetics
. 2002 Aug;161(4):1661–1672. doi: 10.1093/genetics/161.4.1661

Chromosomal map of the model legume Lotus japonicus.

Andrea Pedrosa 1, Niels Sandal 1, Jens Stougaard 1, Dieter Schweizer 1, Andreas Bachmair 1
PMCID: PMC1462223  PMID: 12196409

Abstract

Lotus japonicus is a model plant for the legume family. To facilitate map-based cloning approaches and genome analysis, we performed an extensive characterization of the chromosome complement of the species. A detailed karyotype of L. japonicus Gifu was built and plasmid and BAC clones, corresponding to genetically mapped markers (see the accompanying article by Sandal et al. 2002, this issue), were used for FISH to correlate genetic and chromosomal maps. Hybridization of DNA clones from 32 different genomic regions enabled the assignment of linkage groups to chromosomes, the comparison between genetic and physical distances throughout the genome, and the partial characterization of different repetitive sequences, including telomeric and centromeric repeats. Additional analysis of L. filicaulis and its F(1) hybrid with L. japonicus demonstrated the occurrence of inversions between these closely related species, suggesting that these chromosome rearrangements are early events in speciation of this group.

Full Text

The Full Text of this article is available as a PDF (436.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
  2. Cheng Z., Buell C. R., Wing R. A., Gu M., Jiang J. Toward a cytological characterization of the rice genome. Genome Res. 2001 Dec;11(12):2133–2141. doi: 10.1101/gr.194601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cyranoski D. Japanese legume project may help to fix nitrogen problem. Nature. 2001 Jan 18;409(6818):272–272. doi: 10.1038/35053291. [DOI] [PubMed] [Google Scholar]
  4. Fransz P. F., Armstrong S., de Jong J. H., Parnell L. D., van Drunen C., Dean C., Zabel P., Bisseling T., Jones G. H. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell. 2000 Feb 4;100(3):367–376. doi: 10.1016/s0092-8674(00)80672-8. [DOI] [PubMed] [Google Scholar]
  5. Fransz P., Armstrong S., Alonso-Blanco C., Fischer T. C., Torres-Ruiz R. A., Jones G. Cytogenetics for the model system Arabidopsis thaliana. Plant J. 1998 Mar;13(6):867–876. doi: 10.1046/j.1365-313x.1998.00086.x. [DOI] [PubMed] [Google Scholar]
  6. Fuchs J., Kühne M., Schubert I. Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma. 1998 Sep;107(4):272–276. doi: 10.1007/s004120050308. [DOI] [PubMed] [Google Scholar]
  7. Gill K. S., Gill B. S., Endo T. R., Taylor T. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics. 1996 Dec;144(4):1883–1891. doi: 10.1093/genetics/144.4.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greilhuber J., Ebert I. Genome size variation in Pisum sativum. Genome. 1994 Aug;37(4):646–655. doi: 10.1139/g94-092. [DOI] [PubMed] [Google Scholar]
  9. Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S. Y., Antonio B. A., Parco A. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998 Jan;148(1):479–494. doi: 10.1093/genetics/148.1.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayashi M., Miyahara A., Sato S., Kato T., Yoshikawa M., Taketa M., Hayashi M., Pedrosa A., Onda R., Imaizumi-Anraku H. Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res. 2001 Dec 31;8(6):301–310. doi: 10.1093/dnares/8.6.301. [DOI] [PubMed] [Google Scholar]
  11. Heslop-Harrison J. S., Harrison G. E., Leitch I. J. Reprobing of DNA:DNA in situ hybridization preparations. Trends Genet. 1992 Nov;8(11):372–373. doi: 10.1016/0168-9525(92)90287-e. [DOI] [PubMed] [Google Scholar]
  12. Ijdo J. W., Wells R. A., Baldini A., Reeders S. T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991 Sep 11;19(17):4780–4780. doi: 10.1093/nar/19.17.4780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jiang J., Gill B. S., Wang G. L., Ronald P. C., Ward D. C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4487–4491. doi: 10.1073/pnas.92.10.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kouchi H., Hata S. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet. 1993 Apr;238(1-2):106–119. doi: 10.1007/BF00279537. [DOI] [PubMed] [Google Scholar]
  15. Kulikova O., Gualtieri G., Geurts R., Kim D. J., Cook D., Huguet T., de Jong J. H., Fransz P. F., Bisseling T. Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J. 2001 Jul;27(1):49–58. doi: 10.1046/j.1365-313x.2001.01057.x. [DOI] [PubMed] [Google Scholar]
  16. Künzel G., Korzun L., Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics. 2000 Jan;154(1):397–412. doi: 10.1093/genetics/154.1.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meyne J., Baker R. J., Hobart H. H., Hsu T. C., Ryder O. A., Ward O. G., Wiley J. E., Wurster-Hill D. H., Yates T. L., Moyzis R. K. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990 Apr;99(1):3–10. doi: 10.1007/BF01737283. [DOI] [PubMed] [Google Scholar]
  18. Moore G. Cereal genome evolution: pastoral pursuits with 'Lego' genomes. Curr Opin Genet Dev. 1995 Dec;5(6):717–724. doi: 10.1016/0959-437x(95)80003-n. [DOI] [PubMed] [Google Scholar]
  19. Pedrosa A., Jantsch M. F., Moscone E. A., Ambros P. F., Schweizer D. Characterisation of pericentrometric and sticky intercalary heterochromatin in Ornithogalum longibracteatum (Hyacinthaceae). Chromosoma. 2001 Jul;110(3):203–213. doi: 10.1007/s004120000125. [DOI] [PubMed] [Google Scholar]
  20. Richards E. J., Goodman H. M., Ausubel F. M. The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucleic Acids Res. 1991 Jun 25;19(12):3351–3357. doi: 10.1093/nar/19.12.3351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sandal Niels, Krusell Lene, Radutoiu Simona, Olbryt Magdalena, Pedrosa Andrea, Stracke Silke, Sato Shusei, Kato Tomohiko, Tabata Satoshi, Parniske Martin. A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics. 2002 Aug;161(4):1673–1683. doi: 10.1093/genetics/161.4.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sato S., Kaneko T., Nakamura Y., Asamizu E., Kato T., Tabata S. Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 mb regions of the genome. DNA Res. 2001 Dec 31;8(6):311–318. doi: 10.1093/dnares/8.6.311. [DOI] [PubMed] [Google Scholar]
  23. Schauser L., Handberg K., Sandal N., Stiller J., Thykjaer T., Pajuelo E., Nielsen A., Stougaard J. Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet. 1998 Sep;259(4):414–423. doi: 10.1007/s004380050831. [DOI] [PubMed] [Google Scholar]
  24. Scheres B., van Engelen F., van der Knaap E., van de Wiel C., van Kammen A., Bisseling T. Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell. 1990 Aug;2(8):687–700. doi: 10.1105/tpc.2.8.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schmidt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D., Dean C. Physical map and organization of Arabidopsis thaliana chromosome 4. Science. 1995 Oct 20;270(5235):480–483. doi: 10.1126/science.270.5235.480. [DOI] [PubMed] [Google Scholar]
  26. Simoens C. R., Gielen J., Van Montagu M., Inzé D. Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucleic Acids Res. 1988 Jul 25;16(14B):6753–6766. doi: 10.1093/nar/16.14.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Szczyglowski K., Hamburger D., Kapranov P., de Bruijn F. J. Construction of a Lotus japonicus late nodulin expressed sequence tag library and identification of novel nodule-specific genes. Plant Physiol. 1997 Aug;114(4):1335–1346. doi: 10.1104/pp.114.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wanzenböck E. M., Schöfer C., Schweizer D., Bachmair A. Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Plant J. 1997 May;11(5):1007–1016. doi: 10.1046/j.1365-313x.1997.11051007.x. [DOI] [PubMed] [Google Scholar]
  30. Zwick M. S., Hanson R. E., Islam-Faridi M. N., Stelly D. M., Wing R. A., Price H. J., McKnight T. D. A rapid procedure for the isolation of C0t-1 DNA from plants. Genome. 1997 Feb;40(1):138–142. doi: 10.1139/g97-020. [DOI] [PubMed] [Google Scholar]
  31. Zwick M. S., Islam-Faridi M. N., Czeschin D. G., Jr, Wing R. A., Hart G. E., Stelly D. M., Price H. J. Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics. 1998 Apr;148(4):1983–1992. doi: 10.1093/genetics/148.4.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES