Skip to main content
Genetics logoLink to Genetics
. 2002 Aug;161(4):1713–1726. doi: 10.1093/genetics/161.4.1713

Conservation of gene function in the solanaceae as revealed by comparative mapping of domestication traits in eggplant.

Sami Doganlar 1, Anne Frary 1, Marie-Christine Daunay 1, Richard N Lester 1, Steven D Tanksley 1
PMCID: PMC1462228  PMID: 12196413

Abstract

Quantitative trait loci (QTL) for domestication-related traits were identified in an interspecific F(2) population of eggplant (Solanum linnaeanum x S. melongena). Although 62 quantitative trait loci (QTL) were identified in two locations, most of the dramatic phenotypic differences in fruit weight, shape, color, and plant prickliness that distinguish cultivated eggplant from its wild relative could be attributed to six loci with major effects. Comparison of the genomic locations of the eggplant fruit weight, fruit shape, and color QTL with the positions of similar loci in tomato, potato, and pepper revealed that 40% of the different loci have putative orthologous counterparts in at least one of these other crop species. Overall, the results suggest that domestication of the Solanaceae has been driven by mutations in a very limited number of target loci with major phenotypic effects, that selection pressures were exerted on the same loci despite the crops' independent domestications on different continents, and that the morphological diversity of these four crops can be explained by divergent mutations at these loci.

Full Text

The Full Text of this article is available as a PDF (176.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpert K. B., Tanksley S. D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15503–15507. doi: 10.1073/pnas.93.26.15503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doebley J., Stec A., Hubbard L. The evolution of apical dominance in maize. Nature. 1997 Apr 3;386(6624):485–488. doi: 10.1038/386485a0. [DOI] [PubMed] [Google Scholar]
  4. Doganlar Sami, Frary Anne, Daunay Marie-Christine, Lester Richard N., Tanksley Steven D. A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the solanaceae. Genetics. 2002 Aug;161(4):1697–1711. doi: 10.1093/genetics/161.4.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frary A., Nesbitt T. C., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K. B., Tanksley S. D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000 Jul 7;289(5476):85–88. doi: 10.1126/science.289.5476.85. [DOI] [PubMed] [Google Scholar]
  6. Joubès J., Phan T. H., Just D., Rothan C., Bergounioux C., Raymond P., Chevalier C. Molecular and biochemical characterization of the involvement of cyclin-dependent kinase A during the early development of tomato fruit. Plant Physiol. 1999 Nov;121(3):857–869. doi: 10.1104/pp.121.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kakizaki Y. Hybrid Vigor in Egg-Plants and Its Practical Utilization. Genetics. 1931 Jan;16(1):1–25. doi: 10.1093/genetics/16.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ku H. M., Liu J., Doganlar S., Tanksley S. D. Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovatecontaining region in tomato chromosome 2. Genome. 2001 Jun;44(3):470–475. doi: 10.1139/g01-024. [DOI] [PubMed] [Google Scholar]
  9. Lippman Z., Tanksley S. D. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics. 2001 May;158(1):413–422. doi: 10.1093/genetics/158.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Livingstone K. D., Lackney V. K., Blauth J. R., van Wijk R., Jahn M. K. Genome mapping in capsicum and the evolution of genome structure in the solanaceae. Genetics. 1999 Jul;152(3):1183–1202. doi: 10.1093/genetics/152.3.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paterson A. H., Lin Y. R., Li Z., Schertz K. F., Doebley J. F., Pinson S. R., Liu S. C., Stansel J. W., Irvine J. E. Convergent domestication of cereal crops by independent mutations at corresponding genetic Loci. Science. 1995 Sep 22;269(5231):1714–1718. doi: 10.1126/science.269.5231.1714. [DOI] [PubMed] [Google Scholar]
  12. Purugganan M. D., Boyles A. L., Suddith J. I. Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics. 2000 Jun;155(2):855–862. doi: 10.1093/genetics/155.2.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thorup T. A., Tanyolac B., Livingstone K. D., Popovsky S., Paran I., Jahn M. Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11192–11197. doi: 10.1073/pnas.97.21.11192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tigchelaar E. C., Janick J., Erickson H. T. The Genetics of Anthocyanin Coloration in Eggplant (SOLANUM MELONGENA L.). Genetics. 1968 Nov;60(3):475–491. doi: 10.1093/genetics/60.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Van der Hoeven Rutger, Ronning Catherine, Giovannoni James, Martin Gregory, Tanksley Steven. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell. 2002 Jul;14(7):1441–1456. doi: 10.1105/tpc.010478. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES