Skip to main content
Genetics logoLink to Genetics
. 2002 Aug;161(4):1411–1423. doi: 10.1093/genetics/161.4.1411

A role for the Saccharomyces cerevisiae RENT complex protein Net1 in HMR silencing.

Daniela Kasulke 1, Stefanie Seitz 1, Ann E Ehrenhofer-Murray 1
PMCID: PMC1462229  PMID: 12196389

Abstract

Silencing in the yeast Saccharomyces cerevisiae is known in three classes of loci: in the silent mating-type loci HML and HMR, in subtelomeric regions, and in the highly repetitive rDNA locus, which resides in the nucleolus. rDNA silencing differs markedly from the other two classes of silencing in that it requires a DNA-associated protein complex termed RENT. The Net1 protein, a central component of RENT, is required for nucleolar integrity and the control of exit from mitosis. Another RENT component is the NAD(+)-dependent histone deacetylase Sir2, which is the only silencing factor known to be shared among the three classes of silencing. Here, we investigated the role of Net1 in HMR silencing. The mutation net1-1, as well as NET1 expression from a 2micro-plasmid, restored repression at silencing-defective HMR loci. Both effects were strictly dependent on the Sir proteins. We found overexpressed Net1 protein to be directly associated with the HMR-E silencer, suggesting that Net1 could interact with silencer binding proteins and recruit other silencing factors to the silencer. In agreement with this, Net1 provided ORC-dependent, Sir1-independent silencing when artificially tethered to the silencer. In contrast, our data suggested that net1-1 acted indirectly in HMR silencing by releasing Sir2 from the nucleolus, thus shifting the internal competition for Sir2 from the silenced loci toward HMR.

Full Text

The Full Text of this article is available as a PDF (396.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod A., Rine J. A role for CDC7 in repression of transcription at the silent mating-type locus HMR in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Feb;11(2):1080–1091. doi: 10.1128/mcb.11.2.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brand A. H., Micklem G., Nasmyth K. A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation. Cell. 1987 Dec 4;51(5):709–719. doi: 10.1016/0092-8674(87)90094-8. [DOI] [PubMed] [Google Scholar]
  3. Briscoe A., Jr, Tomkiel J. E. Chromosomal position effects reveal different cis-acting requirements for rDNA transcription and sex chromosome pairing in Drosophila melanogaster. Genetics. 2000 Jul;155(3):1195–1211. doi: 10.1093/genetics/155.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buchman A. R., Kimmerly W. J., Rine J., Kornberg R. D. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jan;8(1):210–225. doi: 10.1128/mcb.8.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buck S. W., Shore D. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. Genes Dev. 1995 Feb 1;9(3):370–384. doi: 10.1101/gad.9.3.370. [DOI] [PubMed] [Google Scholar]
  6. Chien C. T., Buck S., Sternglanz R., Shore D. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell. 1993 Nov 5;75(3):531–541. doi: 10.1016/0092-8674(93)90387-6. [DOI] [PubMed] [Google Scholar]
  7. Costanzo M. C., Hogan J. D., Cusick M. E., Davis B. P., Fancher A. M., Hodges P. E., Kondu P., Lengieza C., Lew-Smith J. E., Lingner C. The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res. 2000 Jan 1;28(1):73–76. doi: 10.1093/nar/28.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cuperus G., Shafaatian R., Shore D. Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO J. 2000 Jun 1;19(11):2641–2651. doi: 10.1093/emboj/19.11.2641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ehrenhofer-Murray A. E., Kamakaka R. T., Rine J. A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics. 1999 Nov;153(3):1171–1182. doi: 10.1093/genetics/153.3.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ehrenhofer-Murray A. E., Rivier D. H., Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics. 1997 Apr;145(4):923–934. doi: 10.1093/genetics/145.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fox C. A., Ehrenhofer-Murray A. E., Loo S., Rine J. The origin recognition complex, SIR1, and the S phase requirement for silencing. Science. 1997 Jun 6;276(5318):1547–1551. doi: 10.1126/science.276.5318.1547. [DOI] [PubMed] [Google Scholar]
  12. Gardner K. A., Fox C. A. The Sir1 protein's association with a silenced chromosome domain. Genes Dev. 2001 Jan 15;15(2):147–157. doi: 10.1101/gad.852801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gardner K. A., Rine J., Fox C. A. A region of the Sir1 protein dedicated to recognition of a silencer and required for interaction with the Orc1 protein in saccharomyces cerevisiae. Genetics. 1999 Jan;151(1):31–44. doi: 10.1093/genetics/151.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ghidelli S., Donze D., Dhillon N., Kamakaka R. T. Sir2p exists in two nucleosome-binding complexes with distinct deacetylase activities. EMBO J. 2001 Aug 15;20(16):4522–4535. doi: 10.1093/emboj/20.16.4522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gottlieb S., Esposito R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell. 1989 Mar 10;56(5):771–776. doi: 10.1016/0092-8674(89)90681-8. [DOI] [PubMed] [Google Scholar]
  16. Gottschling D. E., Aparicio O. M., Billington B. L., Zakian V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 1990 Nov 16;63(4):751–762. doi: 10.1016/0092-8674(90)90141-z. [DOI] [PubMed] [Google Scholar]
  17. Hecht A., Laroche T., Strahl-Bolsinger S., Gasser S. M., Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell. 1995 Feb 24;80(4):583–592. doi: 10.1016/0092-8674(95)90512-x. [DOI] [PubMed] [Google Scholar]
  18. Hecht A., Strahl-Bolsinger S., Grunstein M. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature. 1996 Sep 5;383(6595):92–96. doi: 10.1038/383092a0. [DOI] [PubMed] [Google Scholar]
  19. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  20. Imai S., Armstrong C. M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403(6771):795–800. doi: 10.1038/35001622. [DOI] [PubMed] [Google Scholar]
  21. Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999 Oct 1;13(19):2570–2580. doi: 10.1101/gad.13.19.2570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kennedy B. K., Gotta M., Sinclair D. A., Mills K., McNabb D. S., Murthy M., Pak S. M., Laroche T., Gasser S. M., Guarente L. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell. 1997 May 2;89(3):381–391. doi: 10.1016/s0092-8674(00)80219-6. [DOI] [PubMed] [Google Scholar]
  23. Kimmerly W., Buchman A., Kornberg R., Rine J. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer. EMBO J. 1988 Jul;7(7):2241–2253. doi: 10.1002/j.1460-2075.1988.tb03064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Knop M., Siegers K., Pereira G., Zachariae W., Winsor B., Nasmyth K., Schiebel E. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast. 1999 Jul;15(10B):963–972. doi: 10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  25. Laman H., Balderes D., Shore D. Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Jul;15(7):3608–3617. doi: 10.1128/mcb.15.7.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lustig A. J. Mechanisms of silencing in Saccharomyces cerevisiae. Curr Opin Genet Dev. 1998 Apr;8(2):233–239. doi: 10.1016/s0959-437x(98)80146-9. [DOI] [PubMed] [Google Scholar]
  27. McNally F. J., Rine J. A synthetic silencer mediates SIR-dependent functions in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Nov;11(11):5648–5659. doi: 10.1128/mcb.11.11.5648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moazed D., Kistler A., Axelrod A., Rine J., Johnson A. D. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2186–2191. doi: 10.1073/pnas.94.6.2186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moretti P., Freeman K., Coodly L., Shore D. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 1994 Oct 1;8(19):2257–2269. doi: 10.1101/gad.8.19.2257. [DOI] [PubMed] [Google Scholar]
  30. Pryde F. E., Louis E. J. Limitations of silencing at native yeast telomeres. EMBO J. 1999 May 4;18(9):2538–2550. doi: 10.1093/emboj/18.9.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reifsnyder C., Lowell J., Clarke A., Pillus L. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet. 1996 Sep;14(1):42–49. doi: 10.1038/ng0996-42. [DOI] [PubMed] [Google Scholar]
  32. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  33. Shou W., Sakamoto K. M., Keener J., Morimoto K. W., Traverso E. E., Azzam R., Hoppe G. J., Feldman R. M., DeModena J., Moazed D. Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol Cell. 2001 Jul;8(1):45–55. doi: 10.1016/s1097-2765(01)00291-x. [DOI] [PubMed] [Google Scholar]
  34. Shou W., Seol J. H., Shevchenko A., Baskerville C., Moazed D., Chen Z. W., Jang J., Shevchenko A., Charbonneau H., Deshaies R. J. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell. 1999 Apr 16;97(2):233–244. doi: 10.1016/s0092-8674(00)80733-3. [DOI] [PubMed] [Google Scholar]
  35. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smith J. S., Boeke J. D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 1997 Jan 15;11(2):241–254. doi: 10.1101/gad.11.2.241. [DOI] [PubMed] [Google Scholar]
  37. Straight A. F., Shou W., Dowd G. J., Turck C. W., Deshaies R. J., Johnson A. D., Moazed D. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell. 1999 Apr 16;97(2):245–256. doi: 10.1016/s0092-8674(00)80734-5. [DOI] [PubMed] [Google Scholar]
  38. Sussel L., Shore D. Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7749–7753. doi: 10.1073/pnas.88.17.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Traverso E. E., Baskerville C., Liu Y., Shou W., James P., Deshaies R. J., Charbonneau H. Characterization of the Net1 cell cycle-dependent regulator of the Cdc14 phosphatase from budding yeast. J Biol Chem. 2001 Mar 27;276(24):21924–21931. doi: 10.1074/jbc.M011689200. [DOI] [PubMed] [Google Scholar]
  40. Trelles-Sticken E., Loidl J., Scherthan H. Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci. 1999 Mar;112(Pt 5):651–658. doi: 10.1242/jcs.112.5.651. [DOI] [PubMed] [Google Scholar]
  41. Triolo T., Sternglanz R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature. 1996 May 16;381(6579):251–253. doi: 10.1038/381251a0. [DOI] [PubMed] [Google Scholar]
  42. Visintin R., Craig K., Hwang E. S., Prinz S., Tyers M., Amon A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell. 1998 Dec;2(6):709–718. doi: 10.1016/s1097-2765(00)80286-5. [DOI] [PubMed] [Google Scholar]
  43. Visintin R., Hwang E. S., Amon A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature. 1999 Apr 29;398(6730):818–823. doi: 10.1038/19775. [DOI] [PubMed] [Google Scholar]
  44. Xu E. Y., Kim S., Replogle K., Rine J., Rivier D. H. Identification of SAS4 and SAS5, two genes that regulate silencing in Saccharomyces cerevisiae. Genetics. 1999 Sep;153(1):13–23. doi: 10.1093/genetics/153.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zachariae W., Schwab M., Nasmyth K., Seufert W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science. 1998 Nov 27;282(5394):1721–1724. doi: 10.1126/science.282.5394.1721. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES