Skip to main content
Genetics logoLink to Genetics
. 2002 Sep;162(1):331–340. doi: 10.1093/genetics/162.1.331

An allelic series of mutations in the kit ligand gene of mice. I. Identification of point mutations in seven ethylnitrosourea-induced Kitl(Steel) alleles.

S Rajaraman 1, W S Davis 1, A Mahakali-Zama 1, H K Evans 1, L B Russell 1, M A Bedell 1
PMCID: PMC1462231  PMID: 12242244

Abstract

An allelic series of mutations is an extremely valuable genetic resource for understanding gene function. Here we describe eight mutant alleles at the Steel (Sl) locus of mice that were induced with N-ethyl-N-nitrosourea (ENU). The product of the Sl locus is Kit ligand (or Kitl; also known as mast cell growth factor, stem cell factor, and Steel factor), which is a member of the helical cytokine superfamily and is the ligand for the Kit receptor tyrosine kinase. Seven of the eight ENU-induced Kitl(Sl) alleles, of which five cause missense mutations, one causes a nonsense mutation and exon skipping, and one affects a splice site, were found to contain point mutations in Kitl. Interestingly, each of the five missense mutations affects residues that are within, or very near, conserved alpha-helical domains of Kitl. These ENU-induced mutants should provide important information on structural requirements for function of Kitl and other helical cytokines.

Full Text

The Full Text of this article is available as a PDF (320.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. M., Lyman S. D., Baird A., Wignall J. M., Eisenman J., Rauch C., March C. J., Boswell H. S., Gimpel S. D., Cosman D. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell. 1990 Oct 5;63(1):235–243. doi: 10.1016/0092-8674(90)90304-w. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Yphantis D. A., Lary J. W., Narhi L. O., Lu H. S., Prestrelski S. J., Clogston C. L., Zsebo K. M., Mendiaz E. A., Wypych J. Glycosylated and unglycosylated recombinant-derived human stem cell factors are dimeric and have extensive regular secondary structure. J Biol Chem. 1991 Oct 5;266(28):18942–18948. [PubMed] [Google Scholar]
  3. Bazan J. F. Genetic and structural homology of stem cell factor and macrophage colony-stimulating factor. Cell. 1991 Apr 5;65(1):9–10. doi: 10.1016/0092-8674(91)90401-j. [DOI] [PubMed] [Google Scholar]
  4. Bedell M. A., Brannan C. I., Evans E. P., Copeland N. G., Jenkins N. A., Donovan P. J. DNA rearrangements located over 100 kb 5' of the Steel (Sl)-coding region in Steel-panda and Steel-contrasted mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development. Genes Dev. 1995 Feb 15;9(4):455–470. doi: 10.1101/gad.9.4.455. [DOI] [PubMed] [Google Scholar]
  5. Bedell M. A., Cleveland L. S., O'Sullivan T. N., Copeland N. G., Jenkins N. A. Deletion and interallelic complementation analysis of Steel mutant mice. Genetics. 1996 Mar;142(3):935–944. doi: 10.1093/genetics/142.3.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Besmer P., Manova K., Duttlinger R., Huang E. J., Packer A., Gyssler C., Bachvarova R. F. The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl. 1993:125–137. [PubMed] [Google Scholar]
  7. Brannan C. I., Bedell M. A., Resnick J. L., Eppig J. J., Handel M. A., Williams D. E., Lyman S. D., Donovan P. J., Jenkins N. A., Copeland N. G. Developmental abnormalities in Steel17H mice result from a splicing defect in the steel factor cytoplasmic tail. Genes Dev. 1992 Oct;6(10):1832–1842. doi: 10.1101/gad.6.10.1832. [DOI] [PubMed] [Google Scholar]
  8. Brannan C. I., Lyman S. D., Williams D. E., Eisenman J., Anderson D. M., Cosman D., Bedell M. A., Jenkins N. A., Copeland N. G. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4671–4674. doi: 10.1073/pnas.88.11.4671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cacheiro N. L., Russell L. B. Evidence that Linkage Group IV as well as linkage Group X of the mouse are in chromosome 10. Genet Res. 1975 Apr;25(2):193–195. doi: 10.1017/s0016672300015597. [DOI] [PubMed] [Google Scholar]
  10. Cattanach B. M., Burtenshaw M. D., Rasberry C., Evans E. P. Large deletions and other gross forms of chromosome imbalance compatible with viability and fertility in the mouse. Nat Genet. 1993 Jan;3(1):56–61. doi: 10.1038/ng0193-56. [DOI] [PubMed] [Google Scholar]
  11. Davis A. P., Justice M. J. Mouse alleles: if you've seen one, you haven't seen them all. Trends Genet. 1998 Nov;14(11):438–441. doi: 10.1016/s0168-9525(98)01579-0. [DOI] [PubMed] [Google Scholar]
  12. Dietz H. C., Valle D., Francomano C. A., Kendzior R. J., Jr, Pyeritz R. E., Cutting G. R. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993 Jan 29;259(5095):680–683. doi: 10.1126/science.8430317. [DOI] [PubMed] [Google Scholar]
  13. Flanagan J. G., Chan D. C., Leder P. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell. 1991 Mar 8;64(5):1025–1035. doi: 10.1016/0092-8674(91)90326-t. [DOI] [PubMed] [Google Scholar]
  14. Graw J., Löster J., Neuhäuser-Klaus A., Pretsch W., Schmitt-John T. Molecular analysis of two new Steel mutations in mice shows a transversion or an insertion. Mamm Genome. 1996 Nov;7(11):843–846. doi: 10.1007/s003359900247. [DOI] [PubMed] [Google Scholar]
  15. Graw J., Neuhäuser-Klaus A., Pretsch W. Detection of a point mutation (A to G) in exon 5 of the murine Mgf gene defines a novel allele at the Steel locus with a weak phenotype. Mutat Res. 1997 Sep;382(1-2):75–78. doi: 10.1016/s1383-5726(97)00005-8. [DOI] [PubMed] [Google Scholar]
  16. Gunasekaran K., Nagarajaram H. A., Ramakrishnan C., Balaram P. Stereochemical punctuation marks in protein structures: glycine and proline containing helix stop signals. J Mol Biol. 1998 Feb 6;275(5):917–932. doi: 10.1006/jmbi.1997.1505. [DOI] [PubMed] [Google Scholar]
  17. Hannum C., Culpepper J., Campbell D., McClanahan T., Zurawski S., Bazan J. F., Kastelein R., Hudak S., Wagner J., Mattson J. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature. 1994 Apr 14;368(6472):643–648. doi: 10.1038/368643a0. [DOI] [PubMed] [Google Scholar]
  18. Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell. 1994 Mar;5(3):253–265. doi: 10.1091/mbc.5.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill R. E., Favor J., Hogan B. L., Ton C. C., Saunders G. F., Hanson I. M., Prosser J., Jordan T., Hastie N. D., van Heyningen V. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991 Dec 19;354(6354):522–525. doi: 10.1038/354522a0. [DOI] [PubMed] [Google Scholar]
  20. Hsu Y. R., Wu G. M., Mendiaz E. A., Syed R., Wypych J., Toso R., Mann M. B., Boone T. C., Narhi L. O., Lu H. S. The majority of stem cell factor exists as monomer under physiological conditions. Implications for dimerization mediating biological activity. J Biol Chem. 1997 Mar 7;272(10):6406–6415. doi: 10.1074/jbc.272.10.6406. [DOI] [PubMed] [Google Scholar]
  21. Huang E. J., Manova K., Packer A. I., Sanchez S., Bachvarova R. F., Besmer P. The murine steel panda mutation affects kit ligand expression and growth of early ovarian follicles. Dev Biol. 1993 May;157(1):100–109. doi: 10.1006/dbio.1993.1115. [DOI] [PubMed] [Google Scholar]
  22. Huang E. J., Nocka K. H., Buck J., Besmer P. Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol Biol Cell. 1992 Mar;3(3):349–362. doi: 10.1091/mbc.3.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jiang X., Gurel O., Mendiaz E. A., Stearns G. W., Clogston C. L., Lu H. S., Osslund T. D., Syed R. S., Langley K. E., Hendrickson W. A. Structure of the active core of human stem cell factor and analysis of binding to its receptor kit. EMBO J. 2000 Jul 3;19(13):3192–3203. doi: 10.1093/emboj/19.13.3192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Justice M. J., Noveroske J. K., Weber J. S., Zheng B., Bradley A. Mouse ENU mutagenesis. Hum Mol Genet. 1999;8(10):1955–1963. doi: 10.1093/hmg/8.10.1955. [DOI] [PubMed] [Google Scholar]
  25. Kuroda H., Terada N., Nakayama H., Matsumoto K., Kitamura Y. Infertility due to growth arrest of ovarian follicles in Sl/Slt mice. Dev Biol. 1988 Mar;126(1):71–79. doi: 10.1016/0012-1606(88)90240-0. [DOI] [PubMed] [Google Scholar]
  26. Langley K. E., Mendiaz E. A., Liu N., Narhi L. O., Zeni L., Parseghian C. M., Clogston C. L., Leslie I., Pope J. A., Lu H. S. Properties of variant forms of human stem cell factor recombinantly expressed in Escherichia coli. Arch Biochem Biophys. 1994 May 15;311(1):55–61. doi: 10.1006/abbi.1994.1208. [DOI] [PubMed] [Google Scholar]
  27. Lev S., Blechman J. M., Givol D., Yarden Y. Steel factor and c-kit protooncogene: genetic lessons in signal transduction. Crit Rev Oncog. 1994;5(2-3):141–168. doi: 10.1615/critrevoncog.v5.i2-3.30. [DOI] [PubMed] [Google Scholar]
  28. Lu H. S., Clogston C. L., Wypych J., Fausset P. R., Lauren S., Mendiaz E. A., Zsebo K. M., Langley K. E. Amino acid sequence and post-translational modification of stem cell factor isolated from buffalo rat liver cell-conditioned medium. J Biol Chem. 1991 May 5;266(13):8102–8107. [PubMed] [Google Scholar]
  29. Lu H. S., Clogston C. L., Wypych J., Parker V. P., Lee T. D., Swiderek K., Baltera R. F., Jr, Patel A. C., Chang D. C., Brankow D. W. Post-translational processing of membrane-associated recombinant human stem cell factor expressed in Chinese hamster ovary cells. Arch Biochem Biophys. 1992 Oct;298(1):150–158. doi: 10.1016/0003-9861(92)90106-7. [DOI] [PubMed] [Google Scholar]
  30. Majumdar M. K., Feng L., Medlock E., Toksoz D., Williams D. A. Identification and mutation of primary and secondary proteolytic cleavage sites in murine stem cell factor cDNA yields biologically active, cell-associated protein. J Biol Chem. 1994 Jan 14;269(2):1237–1242. [PubMed] [Google Scholar]
  31. Marker P. C., Seung K., Bland A. E., Russell L. B., Kingsley D. M. Spectrum of Bmp5 mutations from germline mutagenesis experiments in mice. Genetics. 1997 Feb;145(2):435–443. doi: 10.1093/genetics/145.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Martin F. H., Suggs S. V., Langley K. E., Lu H. S., Ting J., Okino K. H., Morris C. F., McNiece I. K., Jacobsen F. W., Mendiaz E. A. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell. 1990 Oct 5;63(1):203–211. doi: 10.1016/0092-8674(90)90301-t. [DOI] [PubMed] [Google Scholar]
  33. Miyazawa K., Williams D. A., Gotoh A., Nishimaki J., Broxmeyer H. E., Toyama K. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood. 1995 Feb 1;85(3):641–649. [PubMed] [Google Scholar]
  34. Nishikawa M., Tojo A., Ikebuchi K., Katayama K., Fujii N., Ozawa K., Asano S. Deletion mutagenesis of stem cell factor defines the C-terminal sequences essential for its biological activity. Biochem Biophys Res Commun. 1992 Oct 15;188(1):292–297. doi: 10.1016/0006-291x(92)92383-9. [DOI] [PubMed] [Google Scholar]
  35. Noveroske J. K., Weber J. S., Justice M. J. The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm Genome. 2000 Jul;11(7):478–483. doi: 10.1007/s003350010093. [DOI] [PubMed] [Google Scholar]
  36. O'Connor S. E., Imperiali B. Modulation of protein structure and function by asparagine-linked glycosylation. Chem Biol. 1996 Oct;3(10):803–812. doi: 10.1016/s1074-5521(96)90064-2. [DOI] [PubMed] [Google Scholar]
  37. Pandit J., Bohm A., Jancarik J., Halenbeck R., Koths K., Kim S. H. Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor. Science. 1992 Nov 20;258(5086):1358–1362. doi: 10.1126/science.1455231. [DOI] [PubMed] [Google Scholar]
  38. RUSSELL W. L. X-ray-induced mutations in mice. Cold Spring Harb Symp Quant Biol. 1951;16:327–336. doi: 10.1101/sqb.1951.016.01.024. [DOI] [PubMed] [Google Scholar]
  39. Russell L. B., Bangham J. W., Stelzner K. F., Hunsicker P. R. High frequency of mosaic mutants produced by N-ethyl-N-nitrosourea exposure of mouse zygotes. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9167–9170. doi: 10.1073/pnas.85.23.9167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Russell W. L., Hunsicker P. R., Raymer G. D., Steele M. H., Stelzner K. F., Thompson H. M. Dose--response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3589–3591. doi: 10.1073/pnas.79.11.3589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Savvides S. N., Boone T., Andrew Karplus P. Flt3 ligand structure and unexpected commonalities of helical bundles and cystine knots. Nat Struct Biol. 2000 Jun;7(6):486–491. doi: 10.1038/75896. [DOI] [PubMed] [Google Scholar]
  42. Schumacher A., Faust C., Magnuson T. Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature. 1996 Dec 19;384(6610):648–648. doi: 10.1038/384648a0. [DOI] [PubMed] [Google Scholar]
  43. Tajima Y., Huang E. J., Vosseller K., Ono M., Moore M. A., Besmer P. Role of dimerization of the membrane-associated growth factor kit ligand in juxtacrine signaling: the Sl17H mutation affects dimerization and stability-phenotypes in hematopoiesis. J Exp Med. 1998 May 4;187(9):1451–1461. doi: 10.1084/jem.187.9.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wehrle-Haller B., Imhof B. A. Stem cell factor presentation to c-Kit. Identification of a basolateral targeting domain. J Biol Chem. 2001 Jan 10;276(16):12667–12674. doi: 10.1074/jbc.M008357200. [DOI] [PubMed] [Google Scholar]
  45. Zhang Z., Zhang R., Joachimiak A., Schlessinger J., Kong X. P. Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7732–7737. doi: 10.1073/pnas.97.14.7732. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES