Skip to main content
Genetics logoLink to Genetics
. 2002 Sep;162(1):135–153. doi: 10.1093/genetics/162.1.135

Courtship and other behaviors affected by a heat-sensitive, molecularly novel mutation in the cacophony calcium-channel gene of Drosophila.

Betty Chan 1, Adriana Villella 1, Pablo Funes 1, Jeffrey C Hall 1
PMCID: PMC1462238  PMID: 12242229

Abstract

The cacophony (cac) locus of Drosophila melanogaster, which encodes a calcium-channel subunit, has been mutated to cause courtship-song defects or abnormal responses to visual stimuli. However, the most recently isolated cac mutant was identified as an enhancer of a comatose mutation's effects on general locomotion. We analyzed the cac(TS2) mutation in terms of its intragenic molecular change and its effects on behaviors more complex than the fly's elementary ability to move. The molecular etiology of this mutation is a nucleotide substitution that causes a proline-to-serine change in a region of the polypeptide near its EF hand. Given that this motif is involved in channel inactivation, it was intriguing that cac(TS2) males generate song pulses containing larger-than-normal numbers of cycles--provided that such males are exposed to an elevated temperature. Similar treatments caused only mild visual-response abnormalities and generic locomotor sluggishness. These results are discussed in the context of calcium-channel functions that subserve certain behaviors and of defects exhibited by the original cacophony mutant. Despite its different kind of amino-acid substitution, compared with that of cac(TS2), cac(S) males sing abnormally in a manner that mimics the new mutant's heat-sensitive song anomaly.

Full Text

The Full Text of this article is available as a PDF (382.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand A., Villella A., Ryner L. C., Carlo T., Goodwin S. F., Song H. J., Gailey D. A., Morales A., Hall J. C., Baker B. S. Molecular genetic dissection of the sex-specific and vital functions of the Drosophila melanogaster sex determination gene fruitless. Genetics. 2001 Aug;158(4):1569–1595. doi: 10.1093/genetics/158.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker B. S., Taylor B. J., Hall J. C. Are complex behaviors specified by dedicated regulatory genes? Reasoning from Drosophila. Cell. 2001 Apr 6;105(1):13–24. doi: 10.1016/s0092-8674(01)00293-8. [DOI] [PubMed] [Google Scholar]
  3. Burgoyne R. D., Weiss J. L. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J. 2001 Jan 1;353(Pt 1):1–12. [PMC free article] [PubMed] [Google Scholar]
  4. Campesan S., Chalmers D., Sandrelli F., Megighian A., Peixoto A. A., Costa R., Kyriacou C. P. Comparative analysis of the nonA region in Drosophila identifies a highly diverged 5' gene that may constrain nonA promoter evolution. Genetics. 2001 Feb;157(2):751–764. doi: 10.1093/genetics/157.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campesan S., Dubrova Y., Hall J. C., Kyriacou C. P. The nonA gene in Drosophila conveys species-specific behavioral characteristics. Genetics. 2001 Aug;158(4):1535–1543. doi: 10.1093/genetics/158.4.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Catterall W. A. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium. 1998 Nov-Dec;24(5-6):307–323. doi: 10.1016/s0143-4160(98)90055-0. [DOI] [PubMed] [Google Scholar]
  7. Dellinger B., Felling R., Ordway R. W. Genetic modifiers of the Drosophila NSF mutant, comatose, include a temperature-sensitive paralytic allele of the calcium channel alpha1-subunit gene, cacophony. Genetics. 2000 May;155(1):203–211. doi: 10.1093/genetics/155.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doughty S. W., Blaney F. E., Orlek B. S., Richards W. G. A molecular mechanism for toxin block in N-type calcium channels. Protein Eng. 1998 Feb;11(2):95–99. doi: 10.1093/protein/11.2.95. [DOI] [PubMed] [Google Scholar]
  9. Doyle J. L., Stubbs L. Ataxia, arrhythmia and ion-channel gene defects. Trends Genet. 1998 Mar;14(3):92–98. doi: 10.1016/s0168-9525(97)01370-x. [DOI] [PubMed] [Google Scholar]
  10. Eberl D. F., Ren D., Feng G., Lorenz L. J., Van Vactor D., Hall L. M. Genetic and developmental characterization of Dmca1D, a calcium channel alpha1 subunit gene in Drosophila melanogaster. Genetics. 1998 Mar;148(3):1159–1169. doi: 10.1093/genetics/148.3.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ganetzky B., Wu C. F. Indirect Suppression Involving Behavioral Mutants with Altered Nerve Excitability in DROSOPHILA MELANOGASTER. Genetics. 1982 Apr;100(4):597–614. doi: 10.1093/genetics/100.4.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenspan R. J. A kinder, gentler genetic analysis of behavior: dissection gives way to modulation. Curr Opin Neurobiol. 1997 Dec;7(6):805–811. doi: 10.1016/s0959-4388(97)80139-0. [DOI] [PubMed] [Google Scholar]
  13. Greenspan R. J., Ferveur J. F. Courtship in Drosophila. Annu Rev Genet. 2000;34:205–232. doi: 10.1146/annurev.genet.34.1.205. [DOI] [PubMed] [Google Scholar]
  14. Hall J. C. Control of male reproductive behavior by the central nervous system of Drosophila: dissection of a courtship pathway by genetic mosaics. Genetics. 1979 Jun;92(2):437–457. doi: 10.1093/genetics/92.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hering S., Berjukow S., Sokolov S., Marksteiner R., Weiss R. G., Kraus R., Timin E. N. Molecular determinants of inactivation in voltage-gated Ca2+ channels. J Physiol. 2000 Oct 15;528(Pt 2):237–249. doi: 10.1111/j.1469-7793.2000.t01-1-00237.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hofmann F., Biel M., Flockerzi V. Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci. 1994;17:399–418. doi: 10.1146/annurev.ne.17.030194.002151. [DOI] [PubMed] [Google Scholar]
  17. Homyk T., Jr, Pye Q. Some mutations affecting neural or muscular tissues alter the physiological components of the electroretinogram in Drosophila. J Neurogenet. 1989 Jan;5(1):37–48. doi: 10.3109/01677068909167263. [DOI] [PubMed] [Google Scholar]
  18. Jen J. Calcium channelopathies in the central nervous system. Curr Opin Neurobiol. 1999 Jun;9(3):274–280. doi: 10.1016/s0959-4388(99)80040-3. [DOI] [PubMed] [Google Scholar]
  19. Kawasaki F., Felling R., Ordway R. W. A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila. J Neurosci. 2000 Jul 1;20(13):4885–4889. doi: 10.1523/JNEUROSCI.20-13-04885.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee R. Y., Lobel L., Hengartner M., Horvitz H. R., Avery L. Mutations in the alpha1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 1997 Oct 15;16(20):6066–6076. doi: 10.1093/emboj/16.20.6066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lewit-Bentley A., Réty S. EF-hand calcium-binding proteins. Curr Opin Struct Biol. 2000 Dec;10(6):637–643. doi: 10.1016/s0959-440x(00)00142-1. [DOI] [PubMed] [Google Scholar]
  22. Littleton J. T., Ganetzky B. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron. 2000 Apr;26(1):35–43. doi: 10.1016/s0896-6273(00)81135-6. [DOI] [PubMed] [Google Scholar]
  23. Main D. M., Ritchie G. M. Cyclic changes in oral smears from young menstruating women. Br J Dermatol. 1967 Jan;79(1):20–30. doi: 10.1111/j.1365-2133.1967.tb11393.x. [DOI] [PubMed] [Google Scholar]
  24. Neumann E. K., Wheeler D. A., Bernstein A. S., Burnside J. W., Hall J. C. Artificial neural network classification of Drosophila courtship song mutants. Biol Cybern. 1992;66(6):485–496. doi: 10.1007/BF00204113. [DOI] [PubMed] [Google Scholar]
  25. Palladino M. J., Keegan L. P., O'Connell M. A., Reenan R. A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell. 2000 Aug 18;102(4):437–449. doi: 10.1016/s0092-8674(00)00049-0. [DOI] [PubMed] [Google Scholar]
  26. Pällysaho S., Huttunen S., Hoikkala A. Identification of X chromosomal restriction fragment length polymorphism markers and their use in a gene localization study in Drosophila virilis and D. littoralis. Genome. 2001 Apr;44(2):242–248. doi: 10.1139/g01-006. [DOI] [PubMed] [Google Scholar]
  27. Rendahl K. G., Gaukhshteyn N., Wheeler D. A., Fry T. A., Hall J. C. Defects in courtship and vision caused by amino acid substitutions in a putative RNA-binding protein encoded by the no-on-transient A (nonA) gene of Drosophila. J Neurosci. 1996 Feb 15;16(4):1511–1522. doi: 10.1523/JNEUROSCI.16-04-01511.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schafer W. R., Kenyon C. J. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature. 1995 May 4;375(6526):73–78. doi: 10.1038/375073a0. [DOI] [PubMed] [Google Scholar]
  29. Shorey H. H. Nature of the Sound Produced by Drosophila melanogaster during Courtship. Science. 1962 Aug 31;137(3531):677–678. doi: 10.1126/science.137.3531.677. [DOI] [PubMed] [Google Scholar]
  30. Smith L. A., Peixoto A. A., Hall J. C. RNA editing in the Drosophila DMCA1A calcium-channel alpha 1 subunit transcript. J Neurogenet. 1998 Nov;12(4):227–240. doi: 10.3109/01677069809108560. [DOI] [PubMed] [Google Scholar]
  31. Smith L. A., Peixoto A. A., Kramer E. M., Villella A., Hall J. C. Courtship and visual defects of cacophony mutants reveal functional complexity of a calcium-channel alpha1 subunit in Drosophila. Genetics. 1998 Jul;149(3):1407–1426. doi: 10.1093/genetics/149.3.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith L. A., Wang X., Peixoto A. A., Neumann E. K., Hall L. M., Hall J. C. A Drosophila calcium channel alpha1 subunit gene maps to a genetic locus associated with behavioral and visual defects. J Neurosci. 1996 Dec 15;16(24):7868–7879. doi: 10.1523/JNEUROSCI.16-24-07868.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stanewsky R., Fry T. A., Reim I., Saumweber H., Hall J. C. Bioassaying putative RNA-binding motifs in a protein encoded by a gene that influences courtship and visually mediated behavior in Drosophila: in vitro mutagenesis of nonA. Genetics. 1996 May;143(1):259–275. doi: 10.1093/genetics/143.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stanewsky R., Rendahl K. G., Dill M., Saumweber H. Genetic and molecular analysis of the X chromosomal region 14B17-14C4 in Drosophila melanogaster: loss of function in NONA, a nuclear protein common to many cell types, results in specific physiological and behavioral defects. Genetics. 1993 Oct;135(2):419–442. doi: 10.1093/genetics/135.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tang S., Yatani A., Bahinski A., Mori Y., Schwartz A. Molecular localization of regions in the L-type calcium channel critical for dihydropyridine action. Neuron. 1993 Dec;11(6):1013–1021. doi: 10.1016/0896-6273(93)90215-d. [DOI] [PubMed] [Google Scholar]
  36. Villella A., Gailey D. A., Berwald B., Ohshima S., Barnes P. T., Hall J. C. Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics. 1997 Nov;147(3):1107–1130. doi: 10.1093/genetics/147.3.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Von Schilcher F. The behavior of cacophony, a courtship song mutant in Drosophila melanogaster. Behav Biol. 1976 Jun;17(2):187–196. doi: 10.1016/s0091-6773(76)90444-2. [DOI] [PubMed] [Google Scholar]
  38. Weinreich F., Jentsch T. J. Neurological diseases caused by ion-channel mutations. Curr Opin Neurobiol. 2000 Jun;10(3):409–415. doi: 10.1016/s0959-4388(00)00089-1. [DOI] [PubMed] [Google Scholar]
  39. Wheeler D. A., Kulkarni S. J., Gailey D. A., Hall J. C. Spectral analysis of courtship songs in behavioral mutants of Drosophila melanogaster. Behav Genet. 1989 Jul;19(4):503–528. doi: 10.1007/BF01066251. [DOI] [PubMed] [Google Scholar]
  40. Zhang J. F., Ellinor P. T., Aldrich R. W., Tsien R. W. Molecular determinants of voltage-dependent inactivation in calcium channels. Nature. 1994 Nov 3;372(6501):97–100. doi: 10.1038/372097a0. [DOI] [PubMed] [Google Scholar]
  41. Zheng W., Feng G., Ren D., Eberl D. F., Hannan F., Dubald M., Hall L. M. Cloning and characterization of a calcium channel alpha 1 subunit from Drosophila melanogaster with similarity to the rat brain type D isoform. J Neurosci. 1995 Feb;15(2):1132–1143. doi: 10.1523/JNEUROSCI.15-02-01132.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhou J., Olcese R., Qin N., Noceti F., Birnbaumer L., Stefani E. Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+ -binding function of a motif with similarity to Ca2+ -binding domains. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2301–2305. doi: 10.1073/pnas.94.6.2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhou Y., Schopperle W. M., Murrey H., Jaramillo A., Dagan D., Griffith L. C., Levitan I. B. A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron. 1999 Apr;22(4):809–818. doi: 10.1016/s0896-6273(00)80739-4. [DOI] [PubMed] [Google Scholar]
  44. von Schilcher F. A mutation which changes courtship song in Drosophila melanogaster. Behav Genet. 1977 May;7(3):251–259. doi: 10.1007/BF01066278. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES