Skip to main content
Genetics logoLink to Genetics
. 2002 Sep;162(1):381–394. doi: 10.1093/genetics/162.1.381

Genetic and molecular characterization of the maize rp3 rust resistance locus.

Craig A Webb 1, Todd E Richter 1, Nicholas C Collins 1, Marie Nicolas 1, Harold N Trick 1, Tony Pryor 1, Scot H Hulbert 1
PMCID: PMC1462242  PMID: 12242248

Abstract

In maize, the Rp3 gene confers resistance to common rust caused by Puccinia sorghi. Flanking marker analysis of rust-susceptible rp3 variants suggested that most of them arose via unequal crossing over, indicating that rp3 is a complex locus like rp1. The PIC13 probe identifies a nucleotide binding site-leucine-rich repeat (NBS-LRR) gene family that maps to the complex. Rp3 variants show losses of PIC13 family members relative to the resistant parents when probed with PIC13, indicating that the Rp3 gene is a member of this family. Gel blots and sequence analysis suggest that at least 9 family members are at the locus in most Rp3-carrying lines and that at least 5 of these are transcribed in the Rp3-A haplotype. The coding regions of 14 family members, isolated from three different Rp3-carrying haplotypes, had DNA sequence identities from 93 to 99%. Partial sequencing of clones of a BAC contig spanning the rp3 locus in the maize inbred line B73 identified five different PIC13 paralogues in a region of approximately 140 kb.

Full Text

The Full Text of this article is available as a PDF (372.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. A., Lawrence G. J., Morrish B. C., Ayliffe M. A., Finnegan E. J., Ellis J. G. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell. 1997 Apr;9(4):641–651. doi: 10.1105/tpc.9.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ayliffe M. A., Frost D. V., Finnegan E. J., Lawrence G. J., Anderson P. A., Ellis J. G. Analysis of alternative transcripts of the flax L6 rust resistance gene. Plant J. 1999 Feb;17(3):287–292. doi: 10.1046/j.1365-313x.1999.00377.x. [DOI] [PubMed] [Google Scholar]
  3. Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., van Daelen R., van der Lee T., Diergaarde P., Groenendijk J. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997 Mar 7;88(5):695–705. doi: 10.1016/s0092-8674(00)81912-1. [DOI] [PubMed] [Google Scholar]
  4. Chin D. B., Arroyo-Garcia R., Ochoa O. E., Kesseli R. V., Lavelle D. O., Michelmore R. W. Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa). Genetics. 2001 Feb;157(2):831–849. doi: 10.1093/genetics/157.2.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins N., Drake J., Ayliffe M., Sun Q., Ellis J., Hulbert S., Pryor T. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell. 1999 Jul;11(7):1365–1376. doi: 10.1105/tpc.11.7.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis G. L., McMullen M. D., Baysdorfer C., Musket T., Grant D., Staebell M., Xu G., Polacco M., Koster L., Melia-Hancock S. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics. 1999 Jul;152(3):1137–1172. doi: 10.1093/genetics/152.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deslandes Laurent, Olivier Jocelyne, Theulieres Frederic, Hirsch Judith, Feng Dong Xin, Bittner-Eddy Peter, Beynon Jim, Marco Yves. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci U S A. 2002 Feb 12;99(4):2404–2409. doi: 10.1073/pnas.032485099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dinesh-Kumar S. P., Baker B. J. Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1908–1913. doi: 10.1073/pnas.020367497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dixon M. S., Hatzixanthis K., Jones D. A., Harrison K., Jones J. D. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell. 1998 Nov;10(11):1915–1925. doi: 10.1105/tpc.10.11.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dixon M. S., Jones D. A., Keddie J. S., Thomas C. M., Harrison K., Jones J. D. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell. 1996 Feb 9;84(3):451–459. doi: 10.1016/s0092-8674(00)81290-8. [DOI] [PubMed] [Google Scholar]
  11. Dodds P. N., Lawrence G. J., Ellis J. G. Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell. 2001 Jan;13(1):163–178. doi: 10.1105/tpc.13.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ellis J., Dodds P., Pryor T. The generation of plant disease resistance gene specificities. Trends Plant Sci. 2000 Sep;5(9):373–379. doi: 10.1016/s1360-1385(00)01694-0. [DOI] [PubMed] [Google Scholar]
  13. HAGAN W. L., HOOKER A. L. GENETICS OF REACTION TO PUCCINIA SORGHI IN ELEVEN CORN INBRED LINES FROM CENTRAL AND SOUTH AMERICA. Phytopathology. 1965 Feb;55:193–197. [PubMed] [Google Scholar]
  14. Halterman D., Zhou F., Wei F., Wise R. P., Schulze-Lefert P. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 2001 Feb;25(3):335–348. doi: 10.1046/j.1365-313x.2001.00982.x. [DOI] [PubMed] [Google Scholar]
  15. Hulbert S. H., Bennetzen J. L. Recombination at the Rp1 locus of maize. Mol Gen Genet. 1991 May;226(3):377–382. doi: 10.1007/BF00260649. [DOI] [PubMed] [Google Scholar]
  16. Hulbert S. H., Webb C. A., Smith S. M., Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol. 2001;39:285–312. doi: 10.1146/annurev.phyto.39.1.285. [DOI] [PubMed] [Google Scholar]
  17. Jia Y., McAdams S. A., Bryan G. T., Hershey H. P., Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 2000 Aug 1;19(15):4004–4014. doi: 10.1093/emboj/19.15.4004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jiang J., Hulbert S. H., Gill B. S., Ward D. C. Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes. Mol Gen Genet. 1996 Oct 16;252(5):497–502. doi: 10.1007/BF02172395. [DOI] [PubMed] [Google Scholar]
  19. Jones D. A., Thomas C. M., Hammond-Kosack K. E., Balint-Kurti P. J., Jones J. D. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science. 1994 Nov 4;266(5186):789–793. doi: 10.1126/science.7973631. [DOI] [PubMed] [Google Scholar]
  20. Lupas A. Predicting coiled-coil regions in proteins. Curr Opin Struct Biol. 1997 Jun;7(3):388–393. doi: 10.1016/s0959-440x(97)80056-5. [DOI] [PubMed] [Google Scholar]
  21. Meyers B. C., Dickerman A. W., Michelmore R. W., Sivaramakrishnan S., Sobral B. W., Young N. D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 1999 Nov;20(3):317–332. doi: 10.1046/j.1365-313x.1999.t01-1-00606.x. [DOI] [PubMed] [Google Scholar]
  22. Michelmore R. W., Meyers B. C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998 Nov;8(11):1113–1130. doi: 10.1101/gr.8.11.1113. [DOI] [PubMed] [Google Scholar]
  23. Pan Q., Wendel J., Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol. 2000 Mar;50(3):203–213. doi: 10.1007/s002399910023. [DOI] [PubMed] [Google Scholar]
  24. Parniske M., Hammond-Kosack K. E., Golstein C., Thomas C. M., Jones D. A., Harrison K., Wulff B. B., Jones J. D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997 Dec 12;91(6):821–832. doi: 10.1016/s0092-8674(00)80470-5. [DOI] [PubMed] [Google Scholar]
  25. Richter T. E., Pryor T. J., Bennetzen J. L., Hulbert S. H. New rust resistance specificities associated with recombination in the Rp1 complex in maize. Genetics. 1995 Sep;141(1):373–381. doi: 10.1093/genetics/141.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saxena K. M., Hooker A. L. On the structure of a gene for disease resistance in maize. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1300–1305. doi: 10.1073/pnas.61.4.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science. 1996 Dec 20;274(5295):2063–2065. doi: 10.1126/science.274.5295.2063. [DOI] [PubMed] [Google Scholar]
  28. Stokes Trevor L., Kunkel Barbara N., Richards Eric J. Epigenetic variation in Arabidopsis disease resistance. Genes Dev. 2002 Jan 15;16(2):171–182. doi: 10.1101/gad.952102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sun Q., Collins N. C., Ayliffe M., Smith S. M., Drake J., Pryor T., Hulbert S. H. Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics. 2001 May;158(1):423–438. doi: 10.1093/genetics/158.1.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takken FL, Thomas CM, Joosten MH, Golstein C, Westerink N, Hille J, Nijkamp HJ, De Wit PJ, Jones JD. A second gene at the tomato Cf-4 locus confers resistance to cladosporium fulvum through recognition of a novel avirulence determinant. Plant J. 1999 Nov;20(3):279–288. doi: 10.1046/j.1365-313x.1999.t01-1-00601.x. [DOI] [PubMed] [Google Scholar]
  31. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science. 1996 Dec 20;274(5295):2060–2063. doi: 10.1126/science.274.5295.2060. [DOI] [PubMed] [Google Scholar]
  32. Thomas C. M., Jones D. A., Parniske M., Harrison K., Balint-Kurti P. J., Hatzixanthis K., Jones J. D. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell. 1997 Dec;9(12):2209–2224. doi: 10.1105/tpc.9.12.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES