Skip to main content
Genetics logoLink to Genetics
. 2002 Sep;162(1):189–202. doi: 10.1093/genetics/162.1.189

A green fluorescent protein reporter genetic screen that identifies modifiers of Hox gene function in the Drosophila embryo.

Samir Merabet 1, Francoise Catala 1, Jacques Pradel 1, Yacine Graba 1
PMCID: PMC1462243  PMID: 12242233

Abstract

Hox genes encode evolutionarily conserved transcription factors that play fundamental roles in the organization of the animal body plan. Molecular studies emphasize that unidentified genes contribute to the control of Hox activity. In this study, we describe a genetic screen designed to identify functions required for the control of the wingless (wg) and empty spiracles (ems) target genes by the Hox Abdominal-A and Abdominal-B proteins. A collection of chromosomal deficiencies were screened for their ability to modify GFP fluorescence patterns driven by Hox response elements (HREs) from wg and ems. We found 15 deficiencies that modify the activity of the ems HRE and 18 that modify the activity of the wg HRE. Many deficiencies cause ectopic activity of the HREs, suggesting that spatial restriction of transcriptional activity is an important level in the control of Hox gene function. Further analysis identified eight loci involved in the homeotic regulation of wg or ems. A majority of these modifier genes correspond to previously characterized genes, although not for their roles in the regulation of Hox targets. Five of them encode products acting in or in connection with signal transduction pathways, which suggests an extensive use of signaling in the control of Hox gene function.

Full Text

The Full Text of this article is available as a PDF (333.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora K., Levine M. S., O'Connor M. B. The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo. Genes Dev. 1994 Nov 1;8(21):2588–2601. doi: 10.1101/gad.8.21.2588. [DOI] [PubMed] [Google Scholar]
  2. Baker N. E. Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J. 1987 Jun;6(6):1765–1773. doi: 10.1002/j.1460-2075.1987.tb02429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bienz M., Tremml G. Domain of Ultrabithorax expression in Drosophila visceral mesoderm from autoregulation and exclusion. Nature. 1988 Jun 9;333(6173):576–578. doi: 10.1038/333576a0. [DOI] [PubMed] [Google Scholar]
  4. Bilder D., Graba Y., Scott M. P. Wnt and TGFbeta signals subdivide the AbdA Hox domain during Drosophila mesoderm patterning. Development. 1998 May;125(9):1781–1790. doi: 10.1242/dev.125.9.1781. [DOI] [PubMed] [Google Scholar]
  5. Bilder D., Scott M. P. Genomic regions required for morphogenesis of the Drosophila embryonic midgut. Genetics. 1995 Nov;141(3):1087–1100. doi: 10.1093/genetics/141.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Botas J. Control of morphogenesis and differentiation by HOM/Hox genes. Curr Opin Cell Biol. 1993 Dec;5(6):1015–1022. doi: 10.1016/0955-0674(93)90086-6. [DOI] [PubMed] [Google Scholar]
  7. Boube M., Benassayag C., Seroude L., Cribbs D. L. Ras1-mediated modulation of Drosophila homeotic function in cell and segment identity. Genetics. 1997 Jun;146(2):619–628. doi: 10.1093/genetics/146.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castelli-Gair J. The lines gene of Drosophila is required for specific functions of the Abdominal-B HOX protein. Development. 1998 Apr;125(7):1269–1274. doi: 10.1242/dev.125.7.1269. [DOI] [PubMed] [Google Scholar]
  9. Chan S. K., Mann R. S. A structural model for a homeotic protein-extradenticle-DNA complex accounts for the choice of HOX protein in the heterodimer. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5223–5228. doi: 10.1073/pnas.93.11.5223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chan S. K., Pöpperl H., Krumlauf R., Mann R. S. An extradenticle-induced conformational change in a HOX protein overcomes an inhibitory function of the conserved hexapeptide motif. EMBO J. 1996 May 15;15(10):2476–2487. [PMC free article] [PubMed] [Google Scholar]
  11. Chan S. K., Ryoo H. D., Gould A., Krumlauf R., Mann R. S. Switching the in vivo specificity of a minimal Hox-responsive element. Development. 1997 May;124(10):2007–2014. doi: 10.1242/dev.124.10.2007. [DOI] [PubMed] [Google Scholar]
  12. Chauvet S., Merabet S., Bilder D., Scott M. P., Pradel J., Graba Y. Distinct hox protein sequences determine specificity in different tissues. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4064–4069. doi: 10.1073/pnas.070046997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Delorenzi M., Bienz M. Expression of Abdominal-B homeoproteins in Drosophila embryos. Development. 1990 Feb;108(2):323–329. doi: 10.1242/dev.108.2.323. [DOI] [PubMed] [Google Scholar]
  14. Florence B., McGinnis W. A genetic screen of the Drosophila X chromosome for mutations that modify Deformed function. Genetics. 1998 Dec;150(4):1497–1511. doi: 10.1093/genetics/150.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Francois V., Solloway M., O'Neill J. W., Emery J., Bier E. Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev. 1994 Nov 1;8(21):2602–2616. doi: 10.1101/gad.8.21.2602. [DOI] [PubMed] [Google Scholar]
  16. García-Bellido A. Genetic control of wing disc development in Drosophila. Ciba Found Symp. 1975;0(29):161–182. doi: 10.1002/9780470720110.ch8. [DOI] [PubMed] [Google Scholar]
  17. Gehring W. J., Qian Y. Q., Billeter M., Furukubo-Tokunaga K., Schier A. F., Resendez-Perez D., Affolter M., Otting G., Wüthrich K. Homeodomain-DNA recognition. Cell. 1994 Jul 29;78(2):211–223. doi: 10.1016/0092-8674(94)90292-5. [DOI] [PubMed] [Google Scholar]
  18. Gellon G., Harding K. W., McGinnis N., Martin M. M., McGinnis W. A genetic screen for modifiers of Deformed homeotic function identifies novel genes required for head development. Development. 1997 Sep;124(17):3321–3331. doi: 10.1242/dev.124.17.3321. [DOI] [PubMed] [Google Scholar]
  19. Gellon G., McGinnis W. Shaping animal body plans in development and evolution by modulation of Hox expression patterns. Bioessays. 1998 Feb;20(2):116–125. doi: 10.1002/(SICI)1521-1878(199802)20:2<116::AID-BIES4>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  20. Graba Y., Aragnol D., Pradel J. Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays. 1997 May;19(5):379–388. doi: 10.1002/bies.950190505. [DOI] [PubMed] [Google Scholar]
  21. Harding K. W., Gellon G., McGinnis N., McGinnis W. A screen for modifiers of Deformed function in Drosophila. Genetics. 1995 Aug;140(4):1339–1352. doi: 10.1093/genetics/140.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hayashi S., Scott M. P. What determines the specificity of action of Drosophila homeodomain proteins? Cell. 1990 Nov 30;63(5):883–894. doi: 10.1016/0092-8674(90)90492-w. [DOI] [PubMed] [Google Scholar]
  23. Hu N., Castelli-Gair J. Study of the posterior spiracles of Drosophila as a model to understand the genetic and cellular mechanisms controlling morphogenesis. Dev Biol. 1999 Oct 1;214(1):197–210. doi: 10.1006/dbio.1999.9391. [DOI] [PubMed] [Google Scholar]
  24. Immerglück K., Lawrence P. A., Bienz M. Induction across germ layers in Drosophila mediated by a genetic cascade. Cell. 1990 Jul 27;62(2):261–268. doi: 10.1016/0092-8674(90)90364-k. [DOI] [PubMed] [Google Scholar]
  25. Jackson S. M., Nakato H., Sugiura M., Jannuzi A., Oakes R., Kaluza V., Golden C., Selleck S. B. dally, a Drosophila glypican, controls cellular responses to the TGF-beta-related morphogen, Dpp. Development. 1997 Oct;124(20):4113–4120. doi: 10.1242/dev.124.20.4113. [DOI] [PubMed] [Google Scholar]
  26. Jones B., McGinnis W. The regulation of empty spiracles by Abdominal-B mediates an abdominal segment identity function. Genes Dev. 1993 Feb;7(2):229–240. doi: 10.1101/gad.7.2.229. [DOI] [PubMed] [Google Scholar]
  27. Karch F., Bender W., Weiffenbach B. abdA expression in Drosophila embryos. Genes Dev. 1990 Sep;4(9):1573–1587. doi: 10.1101/gad.4.9.1573. [DOI] [PubMed] [Google Scholar]
  28. Kennison J. A., Tamkun J. W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8136–8140. doi: 10.1073/pnas.85.21.8136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Li X., Veraksa A., McGinnis W. A sequence motif distinct from Hox binding sites controls the specificity of a Hox response element. Development. 1999 Dec;126(24):5581–5589. doi: 10.1242/dev.126.24.5581. [DOI] [PubMed] [Google Scholar]
  30. Lin X., Perrimon N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature. 1999 Jul 15;400(6741):281–284. doi: 10.1038/22343. [DOI] [PubMed] [Google Scholar]
  31. Maloof J. N., Whangbo J., Harris J. M., Jongeward G. D., Kenyon C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development. 1999 Jan;126(1):37–49. doi: 10.1242/dev.126.1.37. [DOI] [PubMed] [Google Scholar]
  32. Mann R. S., Affolter M. Hox proteins meet more partners. Curr Opin Genet Dev. 1998 Aug;8(4):423–429. doi: 10.1016/s0959-437x(98)80113-5. [DOI] [PubMed] [Google Scholar]
  33. Mann R. S., Chan S. K. Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet. 1996 Jul;12(7):258–262. doi: 10.1016/0168-9525(96)10026-3. [DOI] [PubMed] [Google Scholar]
  34. Martin J. R., Raibaud A., Ollo R. Terminal pattern elements in Drosophila embryo induced by the torso-like protein. Nature. 1994 Feb 24;367(6465):741–745. doi: 10.1038/367741a0. [DOI] [PubMed] [Google Scholar]
  35. McGinnis W., Krumlauf R. Homeobox genes and axial patterning. Cell. 1992 Jan 24;68(2):283–302. doi: 10.1016/0092-8674(92)90471-n. [DOI] [PubMed] [Google Scholar]
  36. Miller D. F., Holtzman S. L., Kalkbrenner A., Kaufman T. C. Homeotic Complex (Hox) gene regulation and homeosis in the mesoderm of the Drosophila melanogaster embryo: the roles of signal transduction and cell autonomous regulation. Mech Dev. 2001 Apr;102(1-2):17–32. doi: 10.1016/s0925-4773(01)00300-8. [DOI] [PubMed] [Google Scholar]
  37. Murawsky C. M., Brehm A., Badenhorst P., Lowe N., Becker P. B., Travers A. A. Tramtrack69 interacts with the dMi-2 subunit of the Drosophila NuRD chromatin remodelling complex. EMBO Rep. 2001 Nov 21;2(12):1089–1094. doi: 10.1093/embo-reports/kve252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Panganiban G. E., Reuter R., Scott M. P., Hoffmann F. M. A Drosophila growth factor homolog, decapentaplegic, regulates homeotic gene expression within and across germ layers during midgut morphogenesis. Development. 1990 Dec;110(4):1041–1050. doi: 10.1242/dev.110.4.1041. [DOI] [PubMed] [Google Scholar]
  39. Reuter R., Panganiban G. E., Hoffmann F. M., Scott M. P. Homeotic genes regulate the spatial expression of putative growth factors in the visceral mesoderm of Drosophila embryos. Development. 1990 Dec;110(4):1031–1040. doi: 10.1242/dev.110.4.1031. [DOI] [PubMed] [Google Scholar]
  40. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  41. Savant-Bhonsale S., Montell D. J. torso-like encodes the localized determinant of Drosophila terminal pattern formation. Genes Dev. 1993 Dec;7(12B):2548–2555. doi: 10.1101/gad.7.12b.2548. [DOI] [PubMed] [Google Scholar]
  42. Schier A. F., Gehring W. J. Direct homeodomain-DNA interaction in the autoregulation of the fushi tarazu gene. Nature. 1992 Apr 30;356(6372):804–807. doi: 10.1038/356804a0. [DOI] [PubMed] [Google Scholar]
  43. Szüts D., Eresh S., Bienz M. Functional intertwining of Dpp and EGFR signaling during Drosophila endoderm induction. Genes Dev. 1998 Jul 1;12(13):2022–2035. doi: 10.1101/gad.12.13.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  45. Treisman J., Gönczy P., Vashishtha M., Harris E., Desplan C. A single amino acid can determine the DNA binding specificity of homeodomain proteins. Cell. 1989 Nov 3;59(3):553–562. doi: 10.1016/0092-8674(89)90038-x. [DOI] [PubMed] [Google Scholar]
  46. Tremml G., Bienz M. Homeotic gene expression in the visceral mesoderm of Drosophila embryos. EMBO J. 1989 Sep;8(9):2677–2685. doi: 10.1002/j.1460-2075.1989.tb08408.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tsuda M., Kamimura K., Nakato H., Archer M., Staatz W., Fox B., Humphrey M., Olson S., Futch T., Kaluza V. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature. 1999 Jul 15;400(6741):276–280. doi: 10.1038/22336. [DOI] [PubMed] [Google Scholar]
  48. Walldorf U., Gehring W. J. Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development. EMBO J. 1992 Jun;11(6):2247–2259. doi: 10.1002/j.1460-2075.1992.tb05284.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Xiong W. C., Montell C. tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye. Genes Dev. 1993 Jun;7(6):1085–1096. doi: 10.1101/gad.7.6.1085. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES