Skip to main content
Genetics logoLink to Genetics
. 2002 Sep;162(1):441–448. doi: 10.1093/genetics/162.1.441

Measures of synteny conservation between species pairs.

Elizabeth Ann Housworth 1, John Postlethwait 1
PMCID: PMC1462247  PMID: 12242252

Abstract

Measures of conserved synteny are important for estimating the relative rates of chromosomal evolution in various lineages. We present a natural way to view the synteny conservation between two species from an Oxford grid--an r x c table summarizing the number of orthologous genes on each of the chromosomes 1 through r of the first species that are on each of the chromosomes 1 through c of the second species. This viewpoint suggests a natural statistic, which we denote by rho and call syntenic correlation, designed to measure the amount of synteny conservation between two species. This measure allows syntenic conservation to be compared across many pairs of species. We improve the previous methods for estimating the true number of conserved syntenies given the observed number of conserved syntenies by taking into account the dependency of the numbers of orthologues observed in the chromosome pairings between the two species and by determining both point and interval estimators. We also discuss the application of our methods to genomes that contain chromosomes of highly variable lengths and to estimators of the true number of conserved segments between species pairs.

Full Text

The Full Text of this article is available as a PDF (97.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bengtsson B. O., Levan K. K., Levan G. Measuring genome reorganization from synteny data. Cytogenet Cell Genet. 1993;64(3-4):198–200. doi: 10.1159/000133574. [DOI] [PubMed] [Google Scholar]
  2. Ehrlich J., Sankoff D., Nadeau J. H. Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics. 1997 Sep;147(1):289–296. doi: 10.1093/genetics/147.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hannenhalli S., Chappey C., Koonin E. V., Pevzner P. A. Genome sequence comparison and scenarios for gene rearrangements: a test case. Genomics. 1995 Nov 20;30(2):299–311. doi: 10.1006/geno.1995.9873. [DOI] [PubMed] [Google Scholar]
  4. Kumar S., Gadagkar S. R., Filipski A., Gu X. Determination of the number of conserved chromosomal segments between species. Genetics. 2001 Mar;157(3):1387–1395. doi: 10.1093/genetics/157.3.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
  6. Murphy W. J., Sun S., Chen Z., Yuhki N., Hirschmann D., Menotti-Raymond M., O'Brien S. J. A radiation hybrid map of the cat genome: implications for comparative mapping. Genome Res. 2000 May;10(5):691–702. doi: 10.1101/gr.10.5.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nadeau J. H., Sankoff D. Counting on comparative maps. Trends Genet. 1998 Dec;14(12):495–501. doi: 10.1016/s0168-9525(98)01607-2. [DOI] [PubMed] [Google Scholar]
  8. Waddington D., Springbett A. J., Burt D. W. A chromosome-based model for estimating the number of conserved segments between pairs of species from comparative genetic maps. Genetics. 2000 Jan;154(1):323–332. doi: 10.1093/genetics/154.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Zakharov I. A., Valeev A. K. Kolichestvennyi analiz évoliutsii genomov mlekopitaiushchikh posredstvom sravneniia geneticheskikh kart. Dokl Akad Nauk SSSR. 1988;301(5):1213–1218. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES